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We present a dynamical description and analysis of nonequilibrium transitions in the noisy one-dimensional
Ginzburg-Landau equation for an extensive system based on a weak noise canonical phase space formulation
of the Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear domain wall or
soliton solutions of the resulting canonical field equations with superimposed diffusive modes. The transition
pathways are characterized by the nucleation and subsequent propagation of domain walls. We discuss the
general switching scenario in terms of a dilute gas of propagating domain walls and evaluate the Arrhenius
factor in terms of the associated action. We find excellent agreement with recent numerical optimization
studies.
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I. INTRODUCTION

Phenomena far from equilibrium are ubiquitous, including
turbulence in fluids, interface and growth problems, chemical
and biological systems, and problems in material science and
nanophysics. In this context the dynamics of complex sys-
tems driven by weak noise, corresponding to rare events, is
of particular interest. The issue of different time scales does
in fact characterize many interesting processes in nature. For
instance, in the case of chemical reactions the reaction time
is often orders of magnitude larger than the molecular vibra-
tion periods[1]. The time scale separation problem is also
encountered in the case of conformational changes of bio-
molecules, nucleation events during phase transitions,
switching of the magnetization in magnetic materials[2,3],
and even in the case of comets exhibiting rapid transitions
between heliocentric orbits around Jupiter[4].

The weak noise limit, characterizing the time scale sepa-
ration, is associated with the strong coupling regime, and the
problem of determining kinetic pathways and transition
probabilities between metastable states in systems with many
degrees of freedom presents one of the most important and
challenging tasks in many areas of physics[5]. The long time
scales are associated with the separation in energy scales of
the thermal energy and the energy barriers between meta-
stable states; the transition takes place by sudden jumps be-
tween metastable states followed by long waiting times in
the vicinity of the states. The fundamental issue is thus the
determination of transition pathways and the associated tran-
sition rates.

In the weak noise limit the standard Monte Carlo method
or direct simulation of the Langevin equation becomes im-
practical owing to the large separation of time scales, and
alternative methods have been developed. The most notable
analytical approach is the formulation due to Freidlin and
Wentzel which yields the transition probabilities in terms of
an action functional[6]. This approach is the analog of the
variational principle proposed by Machlup and Onsager
[7,8]; see also work by Graham and Tél[9,10]. The Freidlin-
Wentzel approach is equivalent to the Martin-Siggia-Rose
method[11] in the weak noise limit of the path integral for-
mulation [12–16]. In order to overcome the time scale gap
various numerical methods have also been proposed. We
mention here the transition path sampling method[17] and
optimization techniques[18,19].

A particularly interesting nonequilibrium problem of rel-
evance in the nanophysics of switches is the influence of
thermal noise on two-level systems with spatial degrees of
freedom; see Refs.[2,3,20]. In a recent paper by E, Ren, and
Vanden-Einden[21] (see also Ref.[19]), this problem has
been addressed using the Ginzburg-Landau equation driven
by thermal noise. Applying the field theoretic version of the
Onsager-Machlup functional[7,8] in the Freidlin-Wentzel
formulation[6], these authors implement a powerful numeri-
cal optimization technique for the determination of the
space-time configuration minimizing the Freidlin-Wentzel
action and in this way determine the kinetic pathways and
their associated action, yielding the switching probabilities in
the long time–low temperature limit. The picture that
emerges from this numerical study is that of noise-induced
nucleation and subsequent propagation of domain walls
across the sample, giving rise to the switch between meta-
stable states.

In recent work we have addressed a related problem in
nonequilibrium physics, namely, the Kardar-Parisi-Zhang
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equation or equivalent noisy Burgers equation describing, for
example, a growing interface in a random environment. Us-
ing a canonical phase space method derived from the weak
noise limit of the Martin-Siggia-Rose functional or directly
from the Fokker-Planck equation, we have, in the one-
dimensional case, analyzed the coupled field equations mini-
mizing the action both analytically[22–27] and numerically
[28]. The picture that emerges is that the transition probabili-
ties in the weak noise limit are associated with soliton propa-
gation and nucleation resulting from soliton collisions.

In the present paper we apply the canonical phase space
approach to the noisy Ginzburg-Landau equation discussed
by E, Ren, and Vanden-Einden[21] and attempt to account
for some of their numerical findings. We thus give analytical
arguments for the propagation of noise-induced solitons and
the nucleation events originating from soliton annihilation
and creation. The paper is organized in the following way. In
Sec. II we introduce the noisy Ginzburg-Landau equation. In
Sec. III we review the canonical phase space approach. In
Sec. IV we discuss diffusive mode and domain wall solutions
of the field equations replacing the noisy Ginzburg-Landau
equation. In Sec. V we analyze the domain wall dynamics. In
Sec. VI we present a stochastic interpretation of our results.
In Sec. VII we discuss equilibrium properties and kinetic
transitions. In Sec. VIII we present an interpretation of the
numerical results obtained by the optimization studies of Eet
al. [21]. Section IX is devoted to a summary and a conclu-
sion. A brief version of the present work has appeared in Ref.
[29].

II. THE NOISY GINZBURG-LANDAU MODEL

The noisy Ginzburg-Landau equation driven by white
noise has the form

] u

] t
= − G

dF

du
+ h, s2.1d

where the locally correlated Gaussian white noise is specified
by the moment

khsx,tdhs0,0dl = Ddsxddstd, s2.2d

with noise strength parameterD. The free energyF provid-
ing the deterministic drive is given by

F =
1

2
E dxFS ] u

] x
D2

+ VsudG . s2.3d

In the switching problem considered by Eet al. [21] the
double well potentialVsud has the form

Vsud = k0
2f1 − usxd2g2 s2.4d

with strength parameterk0. The potential vanishes at the two
minima u= ±1 and assumes the maximum valueVs0d=k0

2 at
u=0. The time scale is set by the kinetic transport coefficient
G, and the dimensionless scalar fieldu determines the spatial
and temporal state of the switch. The “Mexican hat” double
well potential is depicted in Fig. 1.

The Ginzburg-Landau equation in its deterministic form
has been used both in the context of phase ordering kinetics

[30] and in its complex form in the study of pattern forma-
tion [31]. In the noisy case for a finite system the equation
has been studied in[32]; see also an analysis of the related
f4 theory in[33]. In the present problem the noisy equation
provides a generalization of the classical Kramers problem
[5] to spatially extended systems.

By inspection of Eqs.(2.1)–(2.3) we note thatk0 has the
dimension of an inverse length,G the dimension of length
squared over time, andD the dimension of velocity. For large
k0, which is the case considered here, and forh=0 the po-
tential term dominates the diffusive term and the fieldu
locks on to the values ±1 in bulk, imposed boundary values
being accommodated over a saturation or healing length of
order k0

−1. In the presence of noise the minima become un-
stable to thermal fluctuations, and the noise can drive the
system over the potential barrier.

The Ginzburg-Landau equation(2.1) admits a fluctuation-
dissipation theorem yielding the stationary distribution

Pstat~ expF−
2G

D
FG . s2.5d

In a thermal environment at temperatureT we have D
=2GT (in units such thatkB=1) and Pstat~expf−F /Tg, i.e.,
the Boltzmann distribution. The equilibrium states follow
from the condition

dF

du
= − ¹2u − 2k0

2us1 − u2d = 0, s2.6d

yielding two degenerate uniform ground statesu= ±1 with
free energyF=0, as well as two nonuniform domain wall
solutions

udwsxd = ± tanhk0sx − x0d, s2.7d

centered atx0 and of widthk0
−1. For largeuxu the domain wall

solutions overlap with the uniform ground state solutionsu
= ±1. The associated domain wall free energy is

Fdw = 4k0/3. s2.8d

The minima, maxima, and saddle point structure of the com-
plex energy landscape ofF as a functional ofhusxdj are
inferred from the spectrum of the differential operator

FIG. 1. We depict the double well potential defining the unper-
turbed states of the switch. The potential has minima atu= ±1 and
a maximum atu=0.
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d2F

du2 = − ¹2 − 2k0
2s1 − 3u2d. s2.9d

For the ground statesu= ±1 the spectrum ofd2F /du2 is
given by the plane wave mode,expsikxd with positive ei-
genvaluesk2+4k0

2. For a single domain wall configuration or
n connected domain walls the spectrum is composed of zero-
eigenvalue translation modes(Goldstone modes) and super-
imposed phase shifted plane wave modes,expsikxdexpsifd
with positive eigenvaluesk2+4k0

2 (see, e.g., Ref.[34]). We
thus infer that the free energy landscape possesses two global
minima atu= ±1 and a series of local saddle points of free
energy 4nk0/3, corresponding ton connected domain walls
at positionsxi , i =1,2, . . . ,n. In Fig. 2 we have depicted a
static three-domain-wall configuration connecting the ground
statesu=−1 and u= +1 with free energy 4k0. The static
single domain wall or multi-domain-wall configurations cor-
respond to points in the free energy landscapeF=F(husxdj)
and cannot effectuate a switch between the ground state con-
figurations u= ±1. However, in the presence of noise the
Kramers escape mechanism sets in and the system can per-
form a kinetic transition. The transition probability is typi-
cally characterized by an Arrhenius factorP,exp
f−GdF /Dg wheredF is the free energy associated with the
potential barriers encountered in the dynamic transition,
ssee, e.g.,f5gd. In order to address this issue for the noisy
Ginzburg-Landau equation, we apply the canonical phase
space approach.

III. THE CANONICAL PHASE SPACE APPROACH

The canonical phase space approach is discussed in detail
in [28,35]. Briefly, the Fokker-Planck equation for the prob-
ability distributionP(husxdj ,t) has the general form

D
] P

] t
= HP, s3.1d

with formal solution P~expfHt /Dg. The Fokker-Planck
equation(3.1) is driven by the Hamiltonian or Liouvillian
Hsu,d /dud [a differential-functional operator inusxd space].
The method is based on a weak noise WKB-like approxima-
tion

P ~ expF−
S

D
G , s3.2d

applied to Eq.(3.1). To leading order in the noise strengthD
the actionS satisfies the Hamilton-Jacobi equation

] S

] t
+ Hsp,ud = 0, s3.3d

with canonical momentump=dS/du, defining the Hamil-
tonianH as a functional ofu andp and implying a principle
of least action. The variational principledS=0, moreover,
implies the Hamiltonian field equations of motion

] u

] t
=

dH

dp
, s3.4d

] p

] t
= −

dH

du
, s3.5d

and the action

S=E dxdt p
] u

] t
−E dt H. s3.6d

Applying this scheme to the Ginzburg-Landau equation
(2.1), we obtain

] u

] t
= − G

dF

du
+ p, s3.7d

] p

] t
= G

d2F

du2 p, s3.8d

driven by the Hamiltonian(the generator of time transla-
tions)

H =E dx H =
1

2
E dx pFp − 2G

dF

du
G , s3.9d

with dF /du andd2F /du2 given by Eqs.(2.6) and(2.9). As a
result the actionS associated with an orbit fromu1 to u2
traversed in timeT is given by

Ssu1,u2,Td =E
u1,0

u2,T

dxdt Fp
] u

] t
− HG , s3.10d

whereH is the Hamiltonian density. In our further analysis
we shall also make use of the total momentumP (the gen-
erator of space translations)

P =E dx u
] p

] x
. s3.11d

The prescription for determining the relevant Arrhenius fac-
tor associated with a transition and the kinetic pathway is
thus straightforward. Fixing boundary values in space and
time the first step is to solve the coupled field equations(3.7)
and(3.8) for an orbit(a minimizer in the terminology of Ref.
[21]) from u1 to u2 traversed in timeT, next we evaluate the
action S along an orbit according to Eq.(3.10), and finally
deduce the transition probability from Eq.(3.2).

The correspondence with the equivalent Freidlin-Wentzel
action SFW is obtained by inserting the equation of motion
(3.7) and the Hamiltonian(3.9) in the action(3.10), yielding
S=s1/2dedxdtp2 or SFW=s1/2dedxdts]u/]t+GdF /dud2.
The Freidlin-Wentzel method is a Lagrangian configuration
space method with Lagrangian densityL=s1/2ds]u/]t

FIG. 2. We depict a static three-domain-wall configuration con-
necting the ground statesu=−1 andu= +1. The domain walls are
located atx1, x2, andx3. The configuration corresponds to a saddle
point in the free energy landscape and has free energy 4k0.
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+GdF /dud2, whereas the present approach is a phase space
formulation with action(3.10). We also note that the equa-
tions of motion (3.7) and (3.8) are identical to the saddle
point equations in the Martin-Siggia-Rose functional formu-
lation [11,14].

IV. DIFFUSIVE MODE AND DOMAIN WALL SOLUTIONS

More explicitly, insertingdF /du and d2F /du2 from Eqs.
(2.6) and (2.9), the equations of motion(3.7) and (3.8) as-
sume the form

] u

] t
= G

]2u

] x2 + 2Gk0
2us1 − u2d + p, s4.1d

] p

] t
= − G

]2p

] x2 − 2Gk0
2ps1 − 3u2d, s4.2d

and the Hamiltonian is

H =
1

2
E dxpSp + 2G

]2u

] x2 + 4Gk0
2us1 − u2dD . s4.3d

The equations of motion(4.1) and(4.2) determine orbits in a
multidimensional phase spacehusxd ,psxdj lying on the en-
ergy manifolds determined by Eq.(4.3); for open or periodic
boundary conditions the orbits are, moreover, confined by
the conservation of the total momentumP given by Eq.
(3.11). From an analytical point of view the field equations
(4.1) and (4.2) are in general intractable. Even numerically,
the negative diffusion term in Eq.(4.2) renders the coupled
equations highly unstable, as was noted in the numerical
analysis of the Burgers equation[28].

A. Linear diffusive modes

It is instructive first to consider the easily discussed linear
case of simple diffusion for smallk0. Thus ignoring the non-
linear potential terms in Eqs.(4.1) and (4.2) we obtain the
linear equations

] u

] t
= G

]2u

] x2 + p, s4.4d

] p

] t
= − G

]2p

] x2 , s4.5d

generated by the Hamiltonian

H =
1

2
E dxpFp + 2G

]2u

] x2G . s4.6d

In Fourier space, settinguk=edx exps−ikxdu, and pk

=edx exps−ikxdp, uk
* =u−k andpk

* =p−k, the equations of mo-
tion decompose and we arrive at the orbit solution(see Ref.
[35])

ukstd =
u2k sinh Gk2t + u1ksinh Gk2sT − td

sinh Gk2T
s4.7d

from u1k at time t=0 to u2k at time t=T; u1,2
=esdk/2pdexpsikxdu1,2,k. The noise fieldpk is slaved to the
motion of uk and given by

pkstd = Gk2eGk2tu2k − u1ke
−Gk2T

sinh Gk2T
. s4.8d

Likewise, the HamiltonianH decomposes into independent
k-mode contributions

H =E dk

2p
pk

*fpk − 2Gk2ukg. s4.9d

Inserting the solutions(4.7) and(4.8), we obtain specifically
for the energy of thekth mode

Ek =
sGk2d2

2

uu2ku2 + uu1ku2 − 2u1ku2k coshGk2T

sinh2 Gk2T
.

s4.10d

The orbits lie on the energy manifolds given byEk=pk
*fpk

−2Gk2ukg. In the long time limitT→` the orbits migrate to
the zero-energy manifolds consisting of the transient sub-
manifold pk=0 and the stationary submanifoldpk=2Gk2uk,
and pass asymptotically through the hyperbolic fixed point at
suk,pkd=s0,0d, determining the stationary state. In Fig. 3 we
have shown the orbits for a particulark mode in a plot ofpk
versusuk.

Finally, the conserved momentumP and the actionS fol-
low from Eqs.(3.11) and (3.10):

P =E dk

2p
s− ikdpk

*uk s4.11d

and

S=E dk

2p
Gk2uu2k − u1ke

−Gk2Tu2

1 − e−2Gk2T
, s4.12d

yielding the transition probability fromu1k to u2k in time T,

Psu1k,u2k,Td ~ expF−
1

D
E dk

2p
Gk2uu2k − u1ke

−Gk2Tu2

1 − e−2Gk2T G .

s4.13d

In the long time limitT→` we reach the stationary distri-
bution

FIG. 3. We show the orbits in thesuk,pkd phase space. The finite
time orbit from u1k to u2k lies on the energy manifoldEk=pk

*fpk

−2Gk2ukg. In the long time limitT→` the orbits migrate to the
transient manifold pk=0 (I) and the stationary manifoldpk

=2Gk2uk (II ) passing through the saddle pointsuk,pkd=s0,0d (SP)
implying ergodicity and a stationary state.
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Pstshukjd ~ expF−
1

D
E dk

2p
Gk2uuku2G . s4.14d

This result is consistent with the noise-driven diffusion equa-
tion written in the form ]u/]t=−GdF /du+h, khhl
=Ddsxddstd, with free energyF=s1/2dedxs]u/]xd2. Invok-
ing the fluctuation-dissipation theorem we then obtain an
equilibrium distribution given by the Boltzmann factor
exps−F /Td, D=2GT, consistent with Eq.(4.14).

In summary, in the linear purely diffusive case the con-
figurationsusx,td decompose into independentk modes. In
the dynamical phase space approach the noisehk driving the
individual k modes is replaced by the noise fieldpk, which
couples parametrically to the time evolution of theuk mode.
In a transient time regimeuk is damped according to the
diffusion equation and the orbit in phase space lies close to
the transient or noiseless submanifoldpk=0 and approaches
the saddle pointsuk,pkd=s0,0d. At longer times the growing
noise fieldpk drivesuk away from the saddle point, and the
orbit approaches the stationary or noisy submanifoldpk
=2Gk2uk, i.e., the distribution associated with the noise-
driven diffusion equation approaches a stationary distribu-
tion. In the limit T→` the orbit passes asymptotically
through the saddle point and the orbit fromu1k to u2k lies on
the zero-energy manifolds determining the stationary state.

B. Domain wall modes

In the nonlinear case the phase space representation of the
noise-driven Ginzburg Landau equation is given by the
coupled field equations(4.1) and (4.2) determining the or-
bits. As in the linear case we can identify the zero-energy
submanifolds determining the stationary state. This is related
to the existence of a fluctuation-dissipation theorem for the
noisy Ginzburg-Landau equation(2.1) expressed by the ex-
istence of a free energy. From the Hamiltonian(3.9) we infer
tentatively the zero-energy submanifoldsp=0 and p
=2GdF /du. The transient noiseless submanifoldp=0 is con-
sistent with the equations of motion, and the configurations
decay according to the damped deterministic Ginzburg-
Landau equation

] u

] t
= − G

dF

du
. s4.15d

Note that in contrast to the linear case, where theu configu-
rations decompose ink modes which decay according to
uk~exps−Gk2td, an initial configurationu1 in the nonlinear
case will in general decay forming a pattern of interacting
and annihilating domain wall configurations with superim-
posed diffusive modes.

The stationary submanifoldp=2GdF /du inserted in Eqs.
(3.7) and (3.8) yields the equations

] u

] t
= G

dF

du
, s4.16d

] p

] t
= G2 d

du
SdF

du
D2

, s4.17d

which are consistent since]u/]t=s1/2dp. It is interesting to
notice that the motion ofu on the stationary noisy submani-
fold p=2GsdF /dud is a time-reversed version of the motion
on the transient submanifoldp=0. Finally, on the zero-
energy manifold the action in Eq.(3.6) takes the form
S=edx dt p]u/]t=2Gedx dts]u/]tdsdF /dud=2GF, yielding
the stationary distribution in Eq.(2.5) for the noisy
Ginzburg-Landau equation.

In the absence of a fluctuation-dissipation theorem, as is,
for example, the case for the kinetic Kardar-Parisi-Zhang
(KPZ) equation in one dimension or, equivalently, the noisy
Burgers equation, we can in general not explicitly identify
the stationary zero-energy submanifold and thus simply de-
termine the stationary state; an exception is the KPZ equa-
tion in one-dimension where for special reasons a
fluctuation-dissipation theorem is available(see Refs.
[23,24,35]).

In order to address nonequilibrium properties such as a
specific transition probability from an initial stateu1 to a
final stateu2 in passage timeT we must address the nonlinear
equations of motion(4.1) and (4.2). The field equations are
not integrable and do not yield a general analytical solution.
However, we can advance our understanding by first search-
ing for static solutions on the transient manifoldp=0, i.e.,
the solution of the equationdF /du=0 yielding according to
Eq. (2.6) the domain wall solutions in Eq.(2.7). The domain
wall excitations are of the instanton type and can be located
at arbitrary positions(see Ref.[36]). Since the overlap be-
tween two well-separated domain walls is exponentially
small we can construct approximate multi-domain-wall solu-
tions of the form

udw = o
i=1

n

si tanhk0sx − xid + u0, s4.18d

pdw = 0. s4.19d

Here the parity indexsi = ±1 for right hand and left hand
domain walls, respectively, andxi indicates the center of the
domain-wall. The offsetu0=0 for multi-domain-wall con-
figurations overlapping for largeuxu with two different
ground state configurations andu0= ±1 for configurations
overlapping with identical ground statesu= ±1, respectively.
Assuming that the inter-domain-wall distanceuxi −xi+1u is
large compared with the domain wall width 1/k0, i.e., the
case of a dilute domain wall gas, the expression(4.18) con-
stitutes an approximate solution to Eq.(2.6). Since the do-
main wall solutions are associated with the transient sub-
manifold p=0 it also follows from Eqs.(4.3), (3.11), and
(3.10) that they carry vanishing energy, momentum, and ac-
tion within the canonical phase space approach.

V. DOMAIN WALL DYNAMICS

In order to impart dynamical attributes to the domain
walls and thus provide solutions to the coupled field equa-
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tions (4.1) and (4.2) we perform a linear stability analysis
about the static domain wall solutions.

A. Dynamics of a single domain wall

Settingu=udw+du and p=pdw+dp, pdw=0 in Eqs.(4.1)
and (4.2), we obtain to linear order the coupled equations

] du

] t
= G

]2du

] x2 + 2Gk0
2s1 − 3udw

2 ddu + dp, s5.1d

] dp

] t
= − G

]2dp

] x2 − 2Gk0
2s1 − 3udw

2 ddp. s5.2d

Noting that in a Schrödinger equation analog the domain
wall profile udw gives rise to a Bargmann type potential, Eqs.
(5.1) and (5.2) are readily analyzed(see, e.g., Ref.[34]).
Expanding du and dp on the eigenfunctionsCn of the
Schrödinger operator

D = − ¹2 + 2k0
2F2 −

3

cosh2 k0x
G , s5.3d

according to

du = o
n

unCn, s5.4d

dp = o
n

pnCn, s5.5d

the time-dependent expansion coefficientsun and pn are de-
termined by the coupled equations of motion

dun

dt
= − Glnun + pn, s5.6d

dpn

dt
= Glnpn, s5.7d

whereln is the eigenvalue in the eigenvalue equationDCn
=lnCn. Equations(5.6) and(5.7) have the same structure as
the Fourier transformed versions of Eqs.(4.4) and (4.5) in
the case of the linear diffusive modes, and the solutions are
given by Eqs.(4.7) and(4.8) with Gk2 replaced byGln. The
canonical phase space structure withGk2 replaced byGln is
depicted in Fig. 3.

The spectrum ofD in Eq. (5.3) is composed of two bound
statesC0 and C1 with eigenvaluesl0=0 and l1=3k0

2, re-
spectively, and a band of phase-shifted plane wave solutions
Ck with eigenvalueslk=k2+4k0

2:

C0 = S3k0

4
D1/2 1

cosh2 k0x
, l0 = 0, s5.8d

C1 = S3k0

2
D1/2 sinh k0x

cosh2 k0x
, l1 = 3k0

2, s5.9d

Ck = S 1

2p
D1/2

eikxsksxd, lk = k2 + 4k0
2, s5.10d

sksxd =
k2 + k0

2 − 3k0
2 tanh2 k0x + 3ikk0 tanhk0x

sk − ik0dsk − 2ik0d
.

s5.11d

The complex space-dependents matrix sksxd gives rise to a
space and phase modulation of the plane wave mode. Forx
→−` we have sksxd→1, whereas forx→` we obtain
sksxd→expfid0skdgexpfid1skdg where the phase shiftsd0

=2 tan−1sk0/kd and d1=2 tan−1s2k0/kd are associated with
the depletion of the band due to the formation of the bound
statesC0 and C1, respectively. In terms of the expansion
coefficientsun andpn the HamiltonianH, momentumP, and
actionS in Eqs.(4.3), (3.11), and(3.10) are given by

H =
1

2o
n

pn
*spn − 2Glnund, s5.12d

P = o
n

pnE dxudw ¹ Cn, s5.13d

S=
1

2o
n
E dtpn

*pn, s5.14d

expressing the dynamics of the various modes.

1. Domain wall motion

The modeC0 with eigenvaluel0=0 plays a special role
since it is associated with the uniform translation of the do-
main wall. Forl0=0 the equation of motions(5.6) and(5.7)
take the formdu0/dt=p0 and dp0/dt=0 with solutionsu0
=p0t, p0=const. For the fieldu associated with the modeC0
we haveu=udw+u0C0. InsertingC0 andu0=p0t we obtain

u = udw + p0stS3k0

4
D1/2

k0
−1 ¹ udw ~ udwsx − vtd,

s5.15d

describing a domain wall propagating with velocity

v = − p0sS 3

4k0
D1/2

, s = ± 1. s5.16d

The modeC0 is the well-known translation or Goldstone
mode restoring the broken translation symmetry associated
with the localized domain wall mode. In the present canoni-
cal formulation the translation mode also implies the propa-
gation of the domain wall.

It is also instructive to consider the noise fieldp which in
the dynamical description corresponds to the noiseh. In the
case of a single domain wall we obtain from Eq.(5.5) a static
configuration. It is, however, clear that the noise field must
move together with the domain wall configurations, and we
conclude that terms beyond linear order give rise to a renor-
malization of the noise field profile implying a finite propa-
gation velocity, i.e.,

p ~ p0
1

cosh2 k0sx − vtd
. s5.17d

FOGEDBY, HERTZ, AND SVANE PHYSICAL REVIEW E70, 031105(2004)

031105-6



The noise field is thus localized at the position of the
domain wall corresponding to a noise impulse associated
with the formation of the domain wall. In Fig. 4 we depict a
single moving right hand domain wall(index s=1) with as-
sociated noise field. The dynamics of a single domain wall
follows from Eqs.(5.12)–(5.14); we have

E0 = 1
2p0

2, s5.18d

P0 = − p0sS4k0

3
D1/2

, s5.19d

S0 = 1
2Tp0

2. s5.20d

In terms of the propagation velocityv we have P0
=s4/3dk0v and we can associate an effective masss4/3dk0

with the domain wall motion,

m= 4
3k0; s5.21d

note that the mass vanishes in the limit of a broad domain
wall.

2. Deformation and extended modes

The bound stateC1 given by Eq.(5.9) is odd and ac-
counts for the symmetrical deformation of the moving do-
main wall. The time dependence ofu is given by Eqs.(4.7)
and(4.8) with Gk2 replaced byGl1=3Gk0

2. The band of plane
wave solutions in Eq.(5.10) corresponds to corrections to the
leading and trailing edges of the domain wall. The modes
have diffusive character with growing and damped time be-
havior and are given by Eqs.(4.7) and (4.8) with Gk2 re-
placed byGsk2+4k0

2d; note that in the limitk0→0 we recover
the linear case. The extended modes are phase shifted
2 tan−1sk0/kd+2 tan−1s2k0/kd, which by Levinson’s theorem
corresponds to the two bound states, the translation mode
and deformation mode, being depleted from the band.

B. Dynamics of multi-domain-wall configurations

In the multi-domain-wall case the analysis proceeds in a
similar manner. Expanding about the static multi-domain-
wall configuration in Eqs.(4.18) and(4.19), u=udw+du and

p=pdw+dp, pdw=0, we obtain for a dilute domain wall gas
the coupled linear equations

] du

] t
= G

]2du

] x2 + 2Gk0
2F− 2 + 3o

i=1

n
1

cosh2 k0sx − xid
Gdu + dp,

s5.22d

] dp

] t
= − G

]2dp

] x2 − 2Gk0
2F− 2 + 3o

i=1

n
1

cosh2 k0sx − xid
Gdp,

s5.23d

which are analyzed in terms of the spectrum of the
Schrödinger operator

D = − ¹2 + 2k0
2F2 − 3o

i=1

n
1

cosh2 k0sx − xid
G , s5.24d

with identical well-separated potential wells atxi. Expanding
du and dp on the eigenfunctionsCn of D, DCn=lnCn, we
recover the equations of motion(5.6) and (5.7).

The eigenstatesCn are readily expressed as linear super-
positions of the eigenstates for the individual potential wells,
and we obtain the translation modesC0 with eigenvaluel0
=0, the deformation modesC1 with eigenvaluel1=3k0

2, and
the extended plane wave modesCk with eigenvalueslk
=k2+4k0

2,

C0 = o
i=1

n

A0
i C0

i , C0
i ~

1

cosh2 k0sx − xid
, s5.25d

C1 = o
i=1

n

A1
i C1

i , C1
i ~

sinh k0sx − xid
cosh2 k0sx − xid

, s5.26d

Ck ~ eikxp
i=1

n

sksx − xid, sksxd

=
k2 + k0

2 − 3k0
2 tanh2 k0x + 3ikk0 tanhk0x

sk − ik0dsk − 2ik0d
. s5.27d

In terms of the individual eigenfunctions the expansions of
du anddp take the forms

du = o
ni

uniCn
i , uni = unAi , s5.28d

dp = o
ni

pniCn
i , uni = pnAi , s5.29d

and we obtain the equations of motion

duni

dt
= − Glnuni + pni, s5.30d

dpni

dt
= Glnpni, s5.31d

with solutions given by Eqs.(4.7) and (4.8). Moreover, the
dynamics of a multi-domain-wall configuration is given by

FIG. 4. In (a) we show a right hand domain wall inu moving
with velocity v. In (b) we depict the associated impulsive noise
field p.
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H =
1

2o
ni

pni
* spni − 2Glnunid, s5.32d

P = o
ni

pniE dxudw ¹ Cn
i , s5.33d

S=
1

2o
ni
E dtpni

* pni. s5.34d

For the translation mode in particular we havedu0i /dt=p0i,
dp0i /dt=0, yieldingu0i =p0it and we obtain

u = udw + p0isitS3k0

4
D1/2

k0
−1 ¹ udw ~ udwsx − vitd,

s5.35d

with propagation velocity

vi = − p0siS 3

4k0
D1/2

. s5.36d

Likewise, the dynamics of the domain wall atxi is given by

E0i = 1
2p0i

2 , s5.37d

P0i = − p0isiS4k0

3
D1/2

, s5.38d

S0 = 1
2Tp0i

2 . s5.39d

Summarizing, the linear analysis of the static domain wall
configuration leads to a picture of a dilute gas of propagating
domain walls. Superposed on the domain walls are localized
deformation modes and extended modes of diffusive charac-
ter. The time evolution of the domain wall-linear mode gas is
moreover subject to three constraints:(1) the topological sig-
nature of the domain walls implies that a right hand domain
wall is matched to a consecutive left hand domain wall,(2)
translational invariance implies that the total momentumP
given by Eq.(5.33) is conserved, and(3), finally, time trans-
lation invariance entails that the total energyE given by Eq.
(5.32) is a constant of motion.

C. Domain wall nucleation and annihilation

The above analysis of the dynamics of the domain wall–
diffusive mode system is restricted to the dilute gas regime.
However, the topological constraints together with the con-
servation laws allow a heuristic analysis of domain wall col-
lisions. When a right hand domain wall collides with a left
hand domain wall the topological constraint implies that they
must annihilate to the uniform ground statesu= +1 or u=
−1. Moreover, since Eq.(3.11) implies that the momentum
P=0 for u= ±1, the domain wall pair prior to collision must
move with equal and opposite momenta, i.e., equal and op-
posite velocities. Since the phase space formulation is time-
reversal invariant we also infer that pairs of oppositely mov-
ing domain walls of opposite parity can nucleate out of the

uniform ground statesu= ±1. In the ground state Eq.(4.3)
implies that the energy is given byE=s1/2dedx p2. Conse-
quently, in order to generate domain wall pairs out of the
ground state we must assign a finite noise fieldp. In Fig. 5
we have in a plot oft versusx depicted the transition from
the stateu=−1 to the stateu= +1 due to the formation of a
domain wall pair. The system is of sizeL and the transition
takes place in timeT. In Fig. 6 we have shown the corre-
sponding propagation of the domain wall pair receding from
the nucleation zone with opposite velocities together with the
associated noise field. According to Eqs.(5.16) and (5.17)
the noise field profiles comoving with the domain walls are
positive and have the form 1/cosh2 k0sx−vtd.

VI. STOCHASTIC INTERPRETATION

The domain wall gas picture introduced above allow a
systematic dynamical approach to the determination of ki-
netic pathways and to the evaluation of the Arrhenius factors
associated with the transitions. The approach, moreover, per-
mits a straightforward stochastic interpretation making con-
tact with the customary discussion of the noisy Ginzburg-
Landau equation.

A. Domain wall random walk

In the case of a single domain wall the dynamics follows
from Eqs. (5.6) and (5.7) for l0=0, i.e., the equations of
motion du0/dt=p0 and dp0/dt=0 with solutions u0=p0t,

FIG. 5. We show the transition from the ground stateu=−1 to
the ground stateu= +1 in a system of sizeL in time T due to the
nucleation of a domain wall pair at the center of the system.

FIG. 6. In (a) we show the domain wall pair propagating away
from the nucleation zone. In(b) we show the associated comoving
noise field profiles.
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p0=const. The energyE0, momentumP0, and actionS0 are
given by Eqs.(5.18)–(5.20), respectively, and the orbits lie
on the energy manifoldsE0=s1/2dp0

2. In Fig. 7 we have de-
picted the phase space for the motion of a single domain
wall. The plot depicts orbits fromu1 to u2 in time T on the
manifold E0=s1/2dp0

2. In the long time limit the orbits mi-
grate to the zero-energy manifoldE=0. The phase space plot
is a degenerate limit of the phase space plot in Fig. 3 for
k0→0. We note the absence of a stationary zero-energy
manifold and saddle point yielding a stationary state. Since
the momentumP0 according to Eq.(5.19) is proportional to
the canonical momentump0 it follows directly from the ca-
nonical structure that the conjugate variable toP0 is the cen-
ter of mass positionx0 of the domain wall. From the Poisson
bracket hu0,p0j=1 and hx0,P0j=1 together with P0=
−ss4k0/3d1/2p0, we infer u0=−sm1/2x0, m=4k0/3, and the
ensuing equation of motion

m
dx0

dt
= P0, s6.1d

with solution

x0 =
P0

m
t + const. s6.2d

Likewise, the energy and action are given byE0=P0
2/2m and

S0 = T
P0

2

2m
. s6.3d

The stochastic interpretation of the phase space dynamics
readily follows. Considering an orbit fromx1 to x2 traversed
in time T, corresponding to the propagation of a domain wall
with center of mass positionx1 at time t=0 to the center of
mass positionx2 at timet=T, and inserting the solution(6.2)
in Eq. (5.20), we obtain

S0 = 1
2m

sx2 − x1d2

T
, s6.4d

yielding the transition probability fromx1 to x2 in the time
interval T:

Psx1,x2,Td ~ expF−
m

2D

sx2 − x1d2

T
G . s6.5d

This is the Gaussian distribution for random walk with root
mean square deviationxrms=s2TD /md1/2, m=4k0/3. We note

that the distribution in Eq.(6.5) is obtained in the limitG
→0 from the overdamped oscillator distribution in Eq.
(4.13). We conclude that the uniform or ballistic motion of a
domain wall within the dynamical description corresponds
precisely to the ordinary random walk of the domain wall
within the associated stochastic description.

The random walk behavior of a domain wall also follows
easily from the Ginzburg-Landau equation(2.1). Inserting
the fluctuating domain wall ansatzusx,td=tanhk0fx−xstdg,
wherexstd is the time-dependent center of massx and noting
thatdF /du=0 for a domain wall, we obtain, integrating over
space, settinghstd=edx hsx,td,

dxstd
dt

~ hstd, s6.6d

which is the Langevin equation for a random walk.
It is also straightforward to include the contribution to the

stochastic behavior from the deformation and diffusive
modes associated with the domain wall. From Eq.(4.12)
applied to the local deformation mode(def) u1 and the dif-
fusive modes(diff ) uk we obtain for the total action for a
dressed domain wall

S= S0 + Sdef + Sdiff , s6.7d

whereS0 is given by Eq.(6.4) andSdm andSb by

Sdef = 3Gk0
2su21 − u11e

−3Gk0
2Td2

1 − e−6Gk0
2T

, s6.8d

Sdiff =E dk

2p
Gsk2 + 4k0

2d
uu2k − u1ke

−Gsk2+4k0
2dTu2

1 − e−2Gsk2+4k0
2dT

. s6.9d

For the transition probability from an initial dressed domain
wall configurationu1sxd=hx1,u11,u1kj to a final dressed do-
main wall configurationu2sxd=hx2,u21,u2kj during the time
interval T we finally obtain

Psu1,u2,Td = P0PdefPdiff , s6.10d

whereP0 is given by Eq.(6.5) and Pdef~expf−Sdef/Dg and
Pdiff ~expf−Sdiff /Dg. In the long time limitt→` the domain
wall performs a random walk, whereas the deformation
mode and diffusive modes attain a stationary state, i.e.,

Psx,T;u1,hukjd ~ expF−
mx2

2DT
GexpF−

3Gk0
2u1

2

D
G

3expF−
1

D
E dk

2p
Gsk2 + 4k0

2duuku2G .

s6.11d

B. Domain wall gas

In the case of a dilute domain wall gas with associated
linear modes the discussion above applies in a generalized
form. From Eqs.(5.30) and (5.31) for l0=0 we obtain the
equations of motiondu0i /dt=p0i and dp0i /dt=0 with solu-
tions u0i =p0it+const, p0i =const. The energy, momentum,

FIG. 7. We show the orbits in thesu0,p0d phase space in the
case of domain wall motion. The finite-time orbits lie on the finite
energy manifoldsE0=s1/2dp0

2. In the long time limit T→` the
orbit from u1 to u2 migrates to the zero-energy manifoldE0=0.
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and action are given by Eqs.(5.37)–(5.39), respectively, and
each domain wall lies on the corresponding energy manifold
E0i =s1/2dp0i

2 . For each domain wall the phase space plot in
Fig. 4 thus applies. Since the action in Eq.(5.34) is additive
with a contribution from each domain wall the transition
probabilities factorize and we obtain for the random walk
part from Eq.(6.5)

Pshxi1j,hxi2j,Td ~ p
i

expF−
msxi2 − xi1d2

2DT
G . s6.12d

Likewise, the contributions from the deformation and diffu-
sive modes follow from Eqs.(6.8) and (6.9).

VII. KINETIC TRANSITIONS

In the preceding sections we have established the dynami-
cal framework in the case of the noise-driven Ginzburg-
Landau equation and established the connection to the cus-
tomary stochastic interpretation. In summary, the domain
wall gas picture provides a description of a switching sce-
nario in terms of moving right hand and left hand domain
walls with associated linear modes. The dynamical approach,
moreover, implies that the kinetic pathway from an initial
configuration to a final configuration is associated with a
specific orbit in canonical phase space. The action associated
with the orbit yields the Arrhenius factor associated with the
transition. The domain wall gas picture shows that a class of
orbits, i.e., a class of solutions of the field equations can be
parametrized in terms of a dilute gas of propagating domain
walls with superimposed local deformation and extended
phase-shifted diffusive modes. This picture is derived from a
linear analysis and only holdsa priori in the dilute gas limit
and at short times. As discussed below, the domain wall dy-
namics at later times can be extracted heuristically from a
combination of selection rules and conservation laws.

A. Equilibrium

Before we discuss kinetic transitions it is instructive first
to discuss the equilibrium properties briefly. In equilibrium
the free energy landscape is determined by the structure of
Fsud in Eq. (2.3). The complex landscape is characterized by
the presence of two global minima corresponding to the uni-
form ground statesu= +1 andu=−1 and an infinity of saddle
points corresponding to static nonuniform multi-domain-wall
configurations. The flat parts of the saddle points correspond
to the translation modes associated with the domain walls.
The free energyF=0 for the ground states. For an
n-domain-wall configurationF=nm, where the massm
=4k0/3. In Fig. 8 we have sketched the free energy land-
scape associated with a single static domain wall connecting
u=−1 and u= +1. In the case of zero noise forD=0 the
system starting from an arbitrary initial configurationu1sxd
approaches the state with lowest free energy compatible with
the imposed boundary conditions. The relaxational dynamics
is governed by Eq.(4.15) and corresponds in the dynamical
approach to an orbit confined to thep=0 zero-energy sub-
manifold. For open or periodic boundary conditions the con-
figurations with lowest free energy are the two degenerate

uniform ground statesu= ±1. Imposing vanishing boundary
conditionsu=0 at x=0 andx=L for a system of sizeL the
field u grows to the uniform valuesu=−1 or u= +1 over a
healing length of order 1/k0. Imposing periodic boundary
conditions, we infer that the healing profile corresponds to a
half domain wall and that the free energy of the configuration
equals 23 s1/2dm=m. Finally, for skew boundary conditions
with u=−1 for x=0 andu= +1 for x=L, the state with lowest
free energy corresponds to a single domain wall with free
energym. The different scenarios are depicted in Fig. 9. In
the presence of noise forDÞ0 the ground states become
metastable and the system populates the excited states with
FÞ0. The partition function provides a global characteriza-
tion of the equilibrium excursions in the free energy land-
scape and is according to Eq.(2.5) given by

Z = o
huj

expF−
2G

D
FsudG , s7.1d

where the configurationhuj has the free energyFsud, yield-
ing the Boltzmann factor in Eq.(7.1). The evaluation ofZ
and associated correlations, e.g.,kuulsx,td, in the dilute non-
overlapping domain wall gas limit follows closely the well-
known soliton and instanton methods developed in the 1970s
and used in Ref.[34] for the classical easy-plane ferromag-
net. Expanding the free energy defined by Eqs.(2.3) and
(2.4) about ann-domain-wall configuration we have, setting
u=udw+du, F=Fsudwd+s1/2dduDdu. UsingFsudwd=nm, in-

FIG. 8. In(a) we have in a contour plot sketched the free energy
landscape in the case of a single static domain wall overlapping for
large uxu with the ground statesu=−1 andu= +1. The points A and
B indicate two distinct positions of the domain wall, corresponding
to the translation mode. In(b) we have sketched the free energy as
function of u. Theu axis labels collectively theusxd configurations
in the free energy landscape. The points A and B refer to the domain
wall positions. Since the free energy of the domain wall is indepen-
dent of the center of mass position, the landscape exhibits a con-
stant F ridge. In (c) we have depicted the corresponding domain
wall configurations at center of mass positions A and B.
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sertingD from Eq. (5.24), and expandingdu on the eigen-
functionsCn, we obtain

F = nm+
1

2o
ni

lnuuniu2. s7.2d

Introducing a domain wall chemical potentialmdw in order to
control the domain wall densities we arrive at the grand par-
tition function

Z = 2o
n=0

`

expF2G

D
nsmdw − mdG 1

n!
E p

i=1

n

du0idu1ip
k

duki

3expF−
G

D
Sl0o

i=1

n

u0i
2 + l1o

i=1

n

u1i
2 + lko

k

uukiu2DG .

s7.3d

The overall factor of 2 arises from the double degeneracy of
the ground state and the domain walls connecting the ground
states. Thel0=0 eigenvalue yields the translation mode and
it follows that du0i =m1/2dxi, wherexi is the position of the
ith domain wall. The factor 1/n! takes into account the or-
dering of the domain wall when integratingxi over a system
of sizeL. Performing the Gaussian integrals over the defor-
mation and diffusive modes we have in more reduced form

Z = 2o
n=0

`
1

n!
expF2G

D
nsmdw − mdG

3smLdn/2LnSpDL

Gl1
Dn/2

expF1

2o
k

In
pDL

Glk
G . s7.4d

We have introduced the large wave number uv cutoffL in

order to regularizeZ at small distances. Note that in the
treatment in Ref.[34] the lattice distance of the magnetic
chain provided a natural small scale cutoff. Replacing the
summation overk by an integral according to the prescrip-
tion ok→edkrk, where the density of statesrk=L /2p
+sn/2pddd /dk, d=2 tan−1sk0/kd+2 tan−1s2k0/kd, and sum-
ming over domain walls the partition function factorizes into
a diffusive part and a domain wall part, incorporating also
the contribution from the localized deformation modes,

Z = ZdiffZdw, s7.5d

Zdiff = expFLL

2p
ln

pD

GL
G , s7.6d

Zdw = 2 expF8Lk0
3/2S G

pD
D1/2

expS2G

D
smdw − mdDG .

s7.7d

In a thermal environmentD=2GT and the partition function
gives direct access to, e.g., the specific heat. We shall not
pursue this calculation here except to note that the gap in the
domain wall excitation spectrum gives rise to a Schottky
anomaly in the specific heat(see, e.g., Ref.[34]). Noting that
the number of domain walls accessed by the stationary fluc-
tuations is undetermined, it is, however, instructive to evalu-
ate the domain wall densityndw. From the structure ofZ we
infer ndw=sD /2Gdsd log Z/dmdm=0 and inserting Eqs.
(7.5)–(7.7) we obtain, settingk0=3m/4,

ndw = 8p−1/2SD

G
DS3G

4D
mD3/2

expS−
2G

D
mD . s7.8d

The domain wall density vanishes in the limitsD→0 and
D→` and exhibits a maximum forD<Gm. We have de-
pictedndw as a function ofD in Fig. 10.

B. Transitions in the Kramers case

Before turning to the noise-induced kinetic transitions in
the Ginzburg-Landau equation it is instructive to review the
classical Kramers theory[5,37] for a single degree of free-

FIG. 9. In (a) we have shown the ground state configurations
with F=0 in the case of open or periodic boundary conditions. In
(b) the lowest configuration with fixed boundary conditions have
F=m. In (c) we show the lowest spatially degenerate domain wall
configuration withF=m in the case of skew boundary conditions.

FIG. 10. We show the domain wall densityndw in units ofD /2G
as function of the noise strengthD in units of Gm. The density
vanishes in the limitsD→0 andD→` and exhibits a maximum at
4mG /3.
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dom, which can be analyzed completely, and its formulation
within the canonical phase space approach.

1. Kramers theory

We consider the overdamped case characterized by the
Langevin equation for one degree of freedomu

du

dt
= − G

dF

du
+ h, s7.9d

khstdhs0dl = Ddstd, s7.10d

with kinetic coefficientG and noise strengthD; in thermal
equilibriumD=2GT, whereT is the temperature. For the free
energyF we assume a double well profile with maximum
Fs0d at u=0 and minima atu= ±1 with Fs±1d=0. The free
energy is depicted in Fig. 11(a). The Fokker-Planck equation
associated with Eqs.(7.9) and (7.10) has the form

] P

] t
=

1

2
D

]2P

] u2 +
]

] u
SG

dF

du
PD . s7.11d

We note the stationary state for]P/]t=0

Pst . expF−
2G

D
FG , s7.12d

in accordance with Eq.(2.5), showing how the free energy
profile is globally sampled in the stationary state.

In order to evaluate the transition rate from, say, the state
u=−1 to the stateu= +1 across the free energy barrierFs0d
we follow Kramers and set up a constant probability current
J across the barrier generated by a source to the left of the
barrier, in regionA and absorbed by a sink to the right of the
barrier in region B. From the conservation law]P/]t
+]J/]u=0 and Eq.(7.11) we derive the current

J = −
1

2
D

] P

] u
− G

dF

du
P. s7.13d

Assuming a sink atu+.0, we obtain the steady state solu-
tion

Psud =
2J

D
expS−

2G

D
FsudDE

u

u+

du8expS2G

D
Fsu8dD .

s7.14d

Setting up a populationn=e−`
0 duPsud to the left of the bar-

rier the rate is given byk=J/n and we have

k−1 =
2

D
E

−`

0

du expS−
2G

D
FsudDE

u

u+

du8 expS2G

D
Fsu8dD .

s7.15d

Finally, a simple steepest descent calculation forD→0
yields Kramers’ celebrated result for the rate in the over-
damped Smoluchowski limit,F9=d2F /du2,

k =
G

2p
fF9s− 1duF9s0dug1/2 expS−

2G

D
Fs0dD . s7.16d

The rate is determined by the Arrhenius factor exp
f−s2G /DdFs0dg depending on the height of the barrier and
the prefactorsG /2pdfF9s−1duF9s0dug1/2. Here the double de-
rivative F9 can be associated with the oscillation frequencies
in the potential well atu=−1 and about the maximum atu
=0.

2. Dynamical interpretation of Kramers theory

Here we discuss the Kramers escape problem from a po-
tential well within the canonical phase space method. Ac-
cording to the general formulation in Sec. III the Hamil-
tonian associated with the Langevin equation(7.9) has the
form

H =
1

2
pSp − 2G

dF

du
D , s7.17d

yielding the equations of motion

du

dt
= − G

dF

du
+ p, s7.18d

FIG. 11. In (a) we show the double well structure of the free
energyF. In (b) we show orbits in the canonical phase space. The
zero-energy manifolds arep=0 andp=2GdF/du, intersecting at the
saddle pointssu,pd=s−1,0d, s0,0d, and s1,0d. In (c) we show the
inverted double well potential entering in the Newton equation de-
scription of the transition.
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dp

dt
= G

d2F

du2 p, s7.19d

and the associated action

Ssu,Td =Eu,T

dtFp
du

dt
− HG . s7.20d

For the normalized transition probability we have

Psu,Td =
expf− Ssu,Td/Dg

E du expf− Ssu,Td/Dg
. s7.21d

In Fig. 11(b) we have depicted the phase space for the Kram-
ers escape case. The zero-energy manifolds are given byp
=0 and p=2GdF/du. On the phase space plot we have
shown an orbit from regionA to regionB, i.e., across the free
energy barrier. Comparing Fig. 11(a) with Fig. 11(b), we note
that the “uphill” part of the orbit in regionA is controlled by
the p=2GdF/du manifold, whereas the “downhill” part in
regionB is controlled by thep=0 manifold. In the long time
limit the orbit approaches the zero-energy manifoldsp=0
and p=2GdF/du passing close to the saddle points atu=
−1, u=0, andu=1. A simple calculation along the “bulge”
settingH=0 and insertingp=2GdF/du in Eq. (7.20) yields
the Arrhenius factor

expF−
2G

D
Fs0dG , s7.22d

in accordance with Kramers’ result in Eq.(7.16).
Finally, eliminatingp in the coupled equations(7.18) and

(7.19) we obtain the Newton equation of motion

d2u

dt2
= − G2 d

du
F−

1

2
SdF

du
D2G s7.23d

for the motion of a particle of mass 1/G2 in the potential
−s1/2dsdF/dud2. In Fig. 11(c) we have shown the potential
which for a double well free energy possesses three maxima
at u=0 andu= ±1. As indicated in Fig. 11(c) the long time
orbit from A to B is associated with the long waiting time at
the maximum foru=0.

C. Transitions in the Ginzburg-Landau case

In order to induce a nonequilibrium kinetic transition
across the free energy landscape in the Ginzburg-Landau
case we fix the initial configurationu1sxd at timet=0 and the
final configurationu2sxd at timeT. There are two fundamen-
tal issues:(1) the determination of the kinetic pathways and
(2) the evaluation of the transition rate. Generally, in order to
minimize the free energy cost, the pathway passes via saddle
points, i.e., multi-domain-wall excitations, in the free energy
landscape. The actual path chosen, however, depends on the
time T allocated to the transition. The transition rate is de-
termined by the Arrhenius factor exps−2GF /Dd associated
with the free energyF of the saddle points encountered along
the pathway. In addition, there is a prefactor determined by
the attempt frequencies; this issue, however, is not dealt with
in the present context.

Focusing on a kinetic transition or switch between the two
ground statesu=−1 andu= +1, the pathway corresponds to
nucleation of domain walls and their subsequent propagation
across the system. Let us first consider the case of fixed
boundary conditionsu=0 atx=0 andx=L. The ground state
configurations are depicted in Fig. 9(b). In the presence of
noise the ground states are metastable and the system can
switch fromu=−1 to u= +1 by means of the propagation of
a single domain wall across the sample in the transition time
T. As discussed above the profiles close to the boundaries
over a healing length of orderk0

−1 correspond to half domain
walls, and the free energy of either ground state is equal to
Fdw=m, m=4k0/3; note that for periodic boundary condi-
tions as depicted in Fig. 9(a) the free energy of the ground
states vanishes. In order to effectuate a transition a domain
wall must nucleate at either boundary and subsequently
propagate across the system. The nucleation free energy is
Fdw=m and from our discussion of the Kramers case we
infer the Arrhenius factor exps−2Gm/Dd or within the dy-
namical description a nucleation action of the order

Snucl = 2Gm. s7.24d

Within the conventional stochastic description the noise gen-
erates both the nucleation and the subsequent diffusion of the
domain wall across the sample. Since the domain wall car-
ries a finite energy we must within the dynamical description
assign a finite energy or finite noise fieldpsxd at t=0 in order
to ensure propagation of the domain wall. Considering the
case where the right hand domain wall nucleates atx=0, we
assign the noise fieldpsxd~p0/cosh2 k0x given by Eq.(5.17)
at time t=0. In terms of the momentumP0=−p0m

1/2 given
by Eq. (5.19) we thus obtain the velocityv=P0/m, energy
E0=P0

2/2m, and action by Eq.(6.3), i.e., S0=TP0
2/2m. The

constraint that the system of sizeL is switched at timeT
moreover impose a selection rule on the propagation veloc-
ity. We infer v=L /T and obtain the actionS0=mL2/2T asso-
ciated with the transition. The total action associated with a
single domain wall switch is thus given by

S1sTd = Snucl +
mL2

2T
. s7.25d

In Fig. 12 we have in(a) depicted the propagation of a single
right hand domain wall across the sample. In(b) we have
shown the transition in ansx,td plot. In the present case with
fixed boundary conditions the momentumP0 associated with
the motion of the domain wall is generated at the boundary
x=0 at timet=0 and, subsequently, absorbed at the boundary
x=L at timet=T. The momentum is given by Eq.(5.13), i.e.,
P0=p0edxudwdC0/dx. InsertingC0 and udw given by Eqs.
(5.8) and (2.7), respectively, and performing a partial inte-
gration using edx cosh−4k0x=4/3k0 we obtain P0=
−p0m

1/2.0 sincep0,0 for a positive propagation velocity.
Correspondingly, the momentum is absorbed atx=L.

For fixed boundary conditions the transition fromu=−1
to u= +1 can also take place by means of nucleation of two
domain walls at both ends of the system. The domain-walls
subsequently propagate toward one another and annihilate at
x=L /2. The scenario is shown Fig. 13. Since the action is

DOMAIN WALL PROPAGATION AND NUCLEATION IN A … PHYSICAL REVIEW E 70, 031105(2004)

031105-13



additive for the two-domain-wall system the nucleation ac-
tion is given by 2Snucl=2m. However, in order to effectuate
the transition in timeT the velocity is half the velocity in the
single domain wall case and we obtain for the action associ-
ated with the two-domain-wall transition

S2sTd = 2Snucl +
mL2

4T
. s7.26d

Finally, in the general case of a transition fromu= +1 to u
=−1 in timeT by means of the nucleation and propagation of
n domain walls the nucleation action isnSnucl and the domain
walls move with velocityL /Tn; we obtain the action

SnsTd = nSnucl +
mL2

2nT
. s7.27d

In Fig. 14 we have shown in ansxtd plot a four-domain-wall
switch.

In addition to domain wall modes, time-dependent local-
ized deformation and extended diffusive modes are also ex-
cited, corresponding to small Gaussian fluctuations about the
local minima and saddle points, and the transition pathway
from u= +1 to u=−1 proceeds by propagating domain walls
with superposed linear modes subject to energy and momen-
tum conservation and topological constraints. The energy of
the initial state is given byE=s1/2dedxp2, and the noise
field thus has to be assigned initially in order to reach the
switched stateu=−1 in a prescribed timeT. For topological
reasons the domain walls must nucleate and annihilate in
pairs subject to absorption or radiation of linear modes, re-
spectively. Since the linear modes also carry positive action
the dynamical modes with lowest action correspond to nucle-
ation or annihilation of domain wall pairs with equal and
opposite momenta, i.e., equal velocities.

In the case of periodic boundary conditions the momen-
tum P=edxu]p/]x of the initial and final states is zero. The
system is translational invariant and the formation and anni-
hilation of one or several domain wall pairs moving with the
same speed take place at equidistant positions along the axis.
For fixed boundary conditions the translational invariance is
broken and the momentumP is nonvanishing corresponding
to nucleation and annihilation of domain walls at the bound-
aries. This general scenario of switching is completely con-
sistent with the numerical analysis in[21].

Improved estimate of Snucl

The above estimate of the nucleation actionSnucl for a
domain wall was based on an analogy with the Arrhenius
factor in the simple Kramers case of escape from a potential
well. Here we improve the estimate ofSnucl based on the
phase space formulation. We consider the case of a switch

FIG. 12. In (a) the switching fromu= +1 to u=−1 in timeT is
effectuated by means of a right hand domain wall propagating with
velocity v=1/T. The domain wall is nucleated atx=0 and annihi-
lated atx=1. In (b) the process is depicted in ansx,td plot.

FIG. 13. In (a) the switching fromu= +1 to u=−1 in time T
takes place by means of two domain walls propagating in opposite
directions with velocityv=1/2T. The domain walls nucleate at the
boundaries and annihilate at the center. In(b) the switching process
is depicted in ansx,td plot.

FIG. 14. We show a four-domain-wall switch in ansx,td plot.
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from u= +1 to u=−1 in timeT proceeding by(1) nucleation
of two domain walls at the center of the system during the
time interval dt, (2) propagation of the domain walls with
opposite velocities during the time intervalT−2dt, and (3)
annihilation of the domain walls at the boundaries during the
time intervaldt. From the width of a single domain wallk0

−1

and the propagation velocityv=L /2T we estimate the nucle-
ation time, i.e., the time it takes for the nucleation to separate
into two distinct domain walls, to be of orderdt<2/vk0
=4T/k0L. From Eq.(3.10) the nucleation action per domain
wall is given by

Snucl =
1

2
E

u=+1,0

u,dt

dxdtspdu/dt − Hd, s7.28d

whereu is the nucleation configuration just prior to breaking
up into two domain walls;H is the energy density, which we
determine below. In order to estimateSnucl we consider the
field equations(4.1) and (4.2). The initial configuration is
usxd=usx,t=0d=1 and, denoting the initial noise field by
p0sxd=psx,t=0d and, moreover, considering a large system
so thatdt is small, we obtain to leading order indt from the
equations of motion

usx,td < FSG
]2usx,td

] x2 + 2Gk0
2usx,tdf1 − usx,td2gD

t=0
+ p0sxdG

3dt + 1, s7.29d

psx,td < S− G
]2psx,td

] x2 − 2Gk0
2psx,tdf1 − 3usx,td2gD

t=0

3dt + p0sxd, s7.30d

or by insertion

usx,td < p0sxddt + 1, s7.31d

psx,td < GS−
]2p

] x2 + 4k0
2p0sxdDdt + p0sxd. s7.32d

These solutions describe the initial part of the orbit insupd
phase space corresponding to the nucleation of two domain
walls. The unspecified initial noise fieldp0sxd acts as an ini-
tiator. The noise profilep0sxd is localized at the position of
the nucleation. Since the orbit lies on an energy surface we
have E0=s1/2dedxp0sxd2 and we infer the energy density
H=s1/2dp0sxd2. From the equation of motiondusxd /dt
<p0sxd and inserting in the action in Eq.(7.28) we obtain
Snucl<s1/2ddtedxfp0sxd+G(−]2p0sxd /]x2+4k0

2p0sxd)dtp0sxd
−s1/2dp0sxd2g. Rearranging and performing a partial integra-
tion, assumingp0sxd localized, we find the following expres-
sion for the nucleation action per domain wall:

Snucl <
1
2dtE0 + 1

2sdtd2F8k0
2GE0 + GE dxS ] p0sxd

] x
D2G .

s7.33d

This is a short time estimate and holds for a large system,
i.e., for k0L@1. The energyE0=2s1/2dmv2 is found from
the two-domain-wall sector. Insertingdt=4T/k0L, v=L /2T,

m=4k0/3, estimatingf]p0sxd /]xg2= fk0
2p0sxd2, where f is a

“fudge” factor of order 1, and lumping the term linear ind
with the domain wall pair propagation, we obtainSnucl
=dt2s4+ fdk0

2GE0. Further reduction yields the result

Snucl = s4 + fdGm. s7.34d

This expression for the nucleation action has the same form
as the one derived from the simple Kramers theory. In Fig.
15 we have in a phase space plot sketched the orbit and
indicated the nucleation, propagation, and annihilation re-
gions.

VIII. INTERPRETATION OF NUMERICAL RESULT

Here we make contact with the numerical analysis of the
Ginzburg-Landau equation by E, Ren, and Vanden-Eijnden
[21]. These authors analyze the noise-induced switching by
means of optimization techniques applied to the Freidlin-
Wentzel action

SFW =
1

2
E

0

L

dxE
0

T

dtS ] u

] t
− G

]2u

] x2 + 2Gk0
2us1 − u2dD2

s8.1d

for a system of sizeL=1 over a time spanT and find that the
global minimum ofSFW corresponds to the nucleation and
propagation of domain walls. First we observe that the mini-
mizing configurations, the minimizers, of Eq.(8.1) are iden-
tical to the orbits found within the canonical phase space
approach. This correspondence was discussed in Sec. III and
is seen by noting that insertion of the equation of motion for
p and the Hamiltonian(4.3) in the expression for the action
(3.10) yields the Freidlin-Wentzel form in Eq.(8.1).

Switching a system of sizeL in time T by means of a
single domain wall, corresponding to the pathway via the
lowest local minimum of the free energy atFdw=m, the
propagation velocityv=p0/m=L /T, and we obtain the action
S1sTd=Snucl+mL2/2T in Eq. (7.25) and associated transition
probability

FIG. 15. We sketch the orbit in phase space corresponding to the
nucleation of a domain wall pair during timetnucl, the subsequent
propagation across the system during timeT−2tnucl, and the final
annihilation of the individual domain wall at the boundaries during
time tnucl.

DOMAIN WALL PROPAGATION AND NUCLEATION IN A … PHYSICAL REVIEW E 70, 031105(2004)

031105-15



P ~ expS−
Snucl

D
D expS−

mL2

2TD
D . s8.2d

In the thermodynamic limitL→`, P→0 as a result of the
broken symmetry in the double well potential. At long times
the action falls off as 1/T. At intermediate timest and posi-
tions x we haveP~exps−mx2/2Dtd, and the domain wall in
the stochastic interpretation performs a random walk with
mean square displacement 2Dt /m, corresponding to diffusive
behavior. In Fig. 12 we have shown a domain wall nucleat-
ing at the left boundary and propagating with constant veloc-
ity v=1/T to the right boundary, where it annihilates. We
have used the same parameter values as in[21], i.e., d=G
=.03, 2Gk0

2=d−1, T=7, and a system sizeL=1. In Fig. 12(b)
we have plotted the trajectory of the domain wall in space
and time.

The switching can also take place by nucleating two do-
main walls at the boundaries. These then move at half the
velocity v /2 and subsequently annihilate at the center. This
process corresponds to the pathway via the local saddle point
of the free energy atFdw=2m, and the action is given by
S2sTd=2Snucl0+2S1s4Td in Eq. (7.26). The associated transi-
tion probability is

P ~ expS−
2Snucl

D
DexpS−

mL2

4TD
D . s8.3d

Snapshots of this process are shown in Fig. 13(a) and the
corresponding space-time plot in Fig. 13(b).

Combining the contributions from nucleation and the sub-
sequent domain wall propagation we obtain the heuristic ex-
pression in Eq.(7.27), whereSnucl is the action for nucleating
a single domain wall andn is the number of walls. From the
improved estimate ofSnucl in Eq. (7.34) with fudge factorf
<1 we have

Snucl , 5Gk0. s8.4d

In Fig. 16 we have plottedS versusT for n=1–6 domain
walls using the parameter values in[21]. ChoosingSnucl ac-
cording to Eq.(8.4) we find excellent agreement with the
numerical results.

As also discussed in[21] we note that the switching sce-
nario depends onT. At shorter switching times it becomes
more favorable to nucleate more domain walls. In the present
formulation this feature is associated with the finite nucle-

ation or annihilation actionSnucl. This is evidently a finite-
size effect in the sense that the action at a fixedT diverges in
the thermodynamic limitL→`, corresponding to the broken
symmetry.

IX. SUMMARY AND CONCLUSION

In the present paper we have implemented the dynamical
phase space approach developed previously for the noisy
Burgers equation in the case of the one-dimensional noise-
driven Ginzburg-Landau equation. Based on a linear analysis
of the static domain wall solutions in the noiseless case, we
find that the kinetic transitions take place by means of propa-
gating multi-domain-wall configurations with superimposed
local deformation and extended diffusive modes. The ap-
proach also allows for a determination of the Arrhenius fac-
tor associated with the transitions. The motivation for the
present work is a recent numerical optimization study by Eet
al. [21] of the noisy one-dimensional Ginzburg-Landau
equation based on the Freidlin-Wentzel theory of large de-
viations. We find excellent agreement both qualitatively and
quantitatively with the numerical finding of Eet al. [21]. The
dynamical approach offers in the nonperturbative weak noise
or low temperature limit an alternative way of determining
dynamical pathways and the Arrhenius part of the associated
transition rates.
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