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Domain wall propagation and nucleation in a metastable two-level system
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We present a dynamical description and analysis of nonequilibrium transitions in the noisy one-dimensional
Ginzburg-Landau equation for an extensive system based on a weak noise canonical phase space formulation
of the Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear domain wall or
soliton solutions of the resulting canonical field equations with superimposed diffusive modes. The transition
pathways are characterized by the nucleation and subsequent propagation of domain walls. We discuss the
general switching scenario in terms of a dilute gas of propagating domain walls and evaluate the Arrhenius
factor in terms of the associated action. We find excellent agreement with recent numerical optimization
studies.
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I. INTRODUCTION In the weak noise limit the standard Monte Carlo method

Phenomena far from equilibrium are ubiquitous, including®" direct simulation of the Langevin equation becomes im-
turbulence in fluids, interface and growth problems, chemicaPractical owing to the large separation of time scales, and
and biological systems, and problems in material science a ternative methods have been developed. The most notable

nanophysics. In this context the dynamics of complex Sysg;malytical approach is the formulation due to Freidlin and

tems driven by weak noise, corresponding to rare events Wentzel which yields the transition probabilities in terms of

of particular interest. The issue of different time scales doe&n action functiona[6]. This approach is the analog of the
ariational principle proposed by Machlup and Onsager

in fact characterize many interesting processes in nature. F i
y gp n%\?/,S]; see also work by Graham and T6110]. The Freidlin-

instance, in the case of chemical reactions the reaction ti | hi val h I
is often orders of magnitude larger than the molecular vibraYVentzel approach is equivalent to the Martin-Siggia-Rose

tion periods[1]. The time scale separation problem is alsomethqd[ll] in the weak noise limit of the pat_h integral for-
encountered in the case of conformational changes of bior_nuIann [12-1§. In order to overcome the time scale gap

. . .. vari numerical meth hav | n pr . Wi
molecules, nucleation events during phase transmonsa ous numerical methods have also been proposed €

switching of the magnetization in magnetic materig?s3], ention here the transition path sampling metiipd and

; A ) . __optimization techniquefl8,19.
and even in the case of comets exhibiting rapid transitions™ o ha icularly interesting nonequilibrium problem of rel-
between heliocentric orbits around Jupifét.

S S , evance in the nanophysics of switches is the influence of
The weak noise limit, characterizing the time scale sepagermal noise on two-level systems with spatial degrees of
ration, is associated with the strong coupling regime, and thgeedom: see Ref$2,3,20. In a recent paper by E, Ren, and
problem of determining kinetic pathways and traHSitionVanden-Einder[Zl] (see also Ref[19]), this problem has
probabilities between metastable states in systems with mamyeen addressed using the Ginzburg-Landau equation driven
degrees of freedom presents one of the most important angl; thermal noise. Applying the field theoretic version of the
challenging tasks in many areas of phydiss The long time  Onsager-Machlup functiondl7,8] in the Freidlin-Wentzel
scales are associated with the separation in energy Sca|95f6f'mulation[6], these authors implement a powerful numeri-
the thermal energy and the energy barriers between metgg| optimization technique for the determination of the
stable states; the transition takes place by sudden jumps bgpace-time configuration minimizing the Freidlin-Wentzel
tween metastable states followed by long waiting times imgction and in this way determine the kinetic pathways and
the vicinity of the states. The fundamental issue is thus thenejr associated action, yielding the switching probabilities in
determination of transition pathways and the associated trafqne long time—low temperature limit. The picture that
sition rates. emerges from this numerical study is that of noise-induced
nucleation and subsequent propagation of domain walls
across the sample, giving rise to the switch between meta-

*Electronic address: fogedby@phys.au.dk stable states.
"Electronic address: hertz@nordita.dk In recent work we have addressed a related problem in
*Electronic address: svane@phys.au.dk nonequilibrium physics, namely, the Kardar-Parisi-Zhang
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equation or equivalent noisy Burgers equation describing, for V()
example, a growing interface in a random environment. Us-
ing a canonical phase space method derived from the weak K2

0
noise limit of the Martin-Siggia-Rose functional or directly

from the Fokker-Planck equation, we have, in the one-
dimensional case, analyzed the coupled field equations mini-
mizing the action both analyticallj22—27 and numerically
[28]. The picture that emerges is that the transition probabili-
ties in the weak noise limit are associated with soliton propa- W 1 =u
gation and nucleation resulting from soliton collisions.

In the present paper we apply the canonical phase space FIG. 1. We depict the double well potential defining the unper-
approach to the noisy Ginzburg-Landau equation discusseitirbed states of the switch. The potential has minima=at 1 and
by E, Ren, and Vanden-Eindd@1] and attempt to account & maximum au=0.
for some of their numerical findings. We thus give analytical
arguments for the propagation of noise-induced solitons anf30] and in its complex form in the study of pattern forma-
the nucleation events originating from soliton annihilationtion [31]. In the noisy case for a finite system the equation
and creation. The paper is organized in the following way. Inhas been studied if82]; see also an analysis of the related
Sec. Il we introduce the noisy Ginzburg-Landau equation. Ing* theory in[33]. In the present problem the noisy equation
Sec. Il we review the canonical phase space approach. Iprovides a generalization of the classical Kramers problem
Sec. IV we discuss diffusive mode and domain wall solutiong5] to spatially extended systems.
of the field equations replacing the noisy Ginzburg-Landau By inspection of Eqs(2.1)~(2.3) we note thak, has the
equation. In Sec. V we analyze the domain wall dynamics. Irdimension of an inverse lengtih, the dimension of length
Sec. VI we present a stochastic interpretation of our resultssquared over time, andl the dimension of velocity. For large
In Sec. VII we discuss equilibrium properties and kinetick,, which is the case considered here, and 4610 the po-
transitions. In Sec. VIII we present an interpretation of thetential term dominates the diffusive term and the field
numerical results obtained by the optimization studies ef E |ocks on to the values *1 in bulk, imposed boundary values
al. [21]. Section IX is devoted to a summary and a conclu-being accommodated over a saturation or healing length of
sion. A brief version of the present work has appeared in Reforder kgl. In the presence of noise the minima become un-
[29]. stable to thermal fluctuations, and the noise can drive the

system over the potential barrier.
Il. THE NOISY GINZBURG-LANDAU MODEL The Ginzburg-Landau equati@g.1) admits a fluctuation-

dissipation theorem yielding the stationary distribution
The noisy Ginzburg-Landau equation driven by white P y g y

noise has the form o
Pt expl — —F |. (2.5

@——F§+ (2.1 .
gt S ou " '

In a thermal environment at temperatufe we have A
where the locally correlated Gaussian white noise is specified 2I'T (in units such thakg=1) and Py exd-F/T], i.e.,

by the moment the Boltzmann distribution. The equilibrium states follow
from the condition

(n(x,t)7(0,0)) = Ad(x) a(1), (2.2
with noise strength parametér. The free energy provid- OF o oo
ing the deterministic drive is given by Su Vau-2kgu(1 -u) =0, (2.6

2
F= 1 f dx{(@) +V(u)]. (2.3 yielding two degenerate uniform ground states+1 with
2 ax free energyF=0, as well as two nonuniform domain wall

In the switching problem considered by & al. [21] the solutions
double well potentiaV(u) has the form Ugy(X) = * tanhkg(X - Xg), 2.7

V() = kg1 - u(?P (2.4 S .
centered ax, and of widthky". For large|x| the domain wall
with strength parametdg,. The potential vanishes at the two solutions overlap with the uniform ground state solutions

minimau==1 and assumes the maximum vaM@):k(Z) at  =+1. The associated domain wall free energy is

u=0. The time scale is set by the kinetic transport coefficient

I', and the dimensionless scalar fieldietermines the spatial Faw = 4ko/3. (2.8

and temporal state of the switch. The “Mexican hat” double

well potential is depicted in Fig. 1. The minima, maxima, and saddle point structure of the com-

The Ginzburg-Landau equation in its deterministic formplex energy landscape df as a functional of{u(x)} are
has been used both in the context of phase ordering kinetidsferred from the spectrum of the differential operator
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JS
+ (—] f_ ) E*“H(D,U):O, (3.3

JX1 LXZ st with canonical momentunp= ini i

» np=45S/ éu, defining the Hamil-

tonianH as a functional ofi andp and implying a principle

of least action. The variational principléS=0, moreover,
FIG. 2. We depict a static three-domain-wall configuration con-implies the Hamiltonian field equations of motion

necting the ground states=—1 andu=+1. The domain walls are

located atx;, X,, andxz. The configuration corresponds to a saddle @ - ﬁ (3.4
point in the free energy landscape and has free enekgy 4 at  op

S°F P =_ H

=V Ag -3, (2.9 PR (3.5

For the ground states==1 the spectrum of$?F/&u? is ~ @nd the action

given by the plane wave modeexp(ikx) with positive ei- Ju
genvalues+4kZ. For a single domain wall configuration or S:f dxdt Pt —f dt H. (3.6)

n connected domain walls the spectrum is composed of zero-

eigenvalue translation mod¢Soldstone modgsand super-  Applying this scheme to the Ginzburg-Landau equation
imposed phase shifted plane wave modesp(ikx)exp(ip)  (2.1), we obtain
with positive eigenvaluek2+4k§ (see, e.g., Ref[34]). We

thus infer that the free energy landscape possesses two global Ju =— rf +p, (3.7)
minima atu=+1 and a series of local saddle points of free Jt ou

energy 4k,/3, corresponding tam connected domain walls

at positionsx;,i=1,2,...n. In Fig. 2 we have depicted a ap —F& (3.9
static three-domain-wall configuration connecting the ground at 5u2p' '

statesu=-1 andu=+1 with free energy K, The static . o .

single domain wall or multi-domain-wall configurations cor- driven by the Hamiltonianthe generator of time transla-
respond to points in the free energy landscaper({u(x)})  tons

and cannot effectuate a switch between the ground state con- 1 SE
figurationsu=+1. However, in the presence of noise the H:deHZEJdX p[p—ZF—],
Kramers escape mechanism sets in and the system can per-

form a kinetic transition. The transition probability is typi- with 6F/éu and 6°F/ 8u? given by Eqs(2.6) and(2.9). As a
cally characterized by an Arrhenius factoP~exp result the actiorS associated with an orbit from; to u,
[-I'sF/A] where 6F is the free energy associated with the traversed in timeT is given by

potential barriers encountered in th_e Fiynamic transit!on, U, T au

(see, e.g.[5]). In order to address this issue for the noisy S(uy, Uy, T) :f dxdt{p— —H], (3.10
Ginzburg-Landau equation, we apply the canonical phase ug,0 Jat

space approach.

(3.9

where’H is the Hamiltonian density. In our further analysis
we shall also make use of the total momentlinithe gen-

The canonical phase space approach is discussed in detail ap
in [28,35. Briefly, the Fokker-Planck equation for the prob- I :f dx w (3.1

ability distribution P({u(x)},t) has the general form
The prescription for determining the relevant Arrhenius fac-

P = HP, (3. tor associated with a transition and the kinetic pathway is

at thus straightforward. Fixing boundary values in space and

with formal solution PxexdHt/A]. The Fokker-Planck g?f(;hg)%?t;:i%i(t; ;?L‘f;};gr?r??ﬁéeg Ilrili?];guatg??ef
equation(3.1) is driven by the Hamiltonian or Liouvillian ' ay :

H(u, 8/ u) [a differential-functional operator ia(x) spacé [21]) from u, to u, traversed in timél, next we evaluate the

The method is based on a weak noise WKB-like approximaggt(ﬁzs ,?]Igr;?aﬁ;tgr? |Lf:)cbc§gicljiltr;gfrt(§JmEgélz? » and finally
tion 2).

The correspondence with the equivalent Freidlin-Wentzel
IS action Sy is obtained by inserting the equation of motion
P exp{— —} : (3.2 (3.7 and the Hamiltoniari3.9) in the action(3.10), yielding
S=(1/2)fdxdtg or Sqy=(1/2) [dxdtdu/dt+T 5F/du)>.
applied to Eq(3.1). To leading order in the noise strength  The Freidlin-Wentzel method is a Lagrangian configuration
the actionS satisfies the Hamilton-Jacobi equation space method with Lagrangian densig=(1/2)(du/dt
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+I8F/ du)?, whereas the present approach is a phase space 4 ey
formulation with action(3.10. We also note that the equa- o= «
tions of motion(3.7) and (3.8) are identical to the saddle Es0 L P
point equations in the Martin-Siggia-Rose functional formu- / X
lation [11,14. SP N
U Ug

IV. DIFFUSIVE MODE AND DOMAIN WALL SOLUTIONS E,<0 7 ///

More explicitly, insertingsF/ su and 8°F/ éu? from Egs. B0
(2.6) and (2.9), the equations of motio(3.7) and(3.8) as-

sume the form
FIG. 3. We show the orbits in the, p,) phase space. The finite

a_u —F@ +oT 2u(1 _uz) " (4.1) time orbit from uy, to uy lies on the energy manifolé,= p;[pk
it 9x? ko P ’ -2I'k?u,]. In the long time limitT—o the orbits migrate to the

transient manifold p,=0 (I) and the stationary manifoldoy
ap &Zp =2I'K?u, (Il passing through the saddle poiik,p,)=(0,0 (SP
ot =- Fﬁ_xz - 2I'kdp(1 - 3u?), (4.2 implying ergodicity and a stationary state.

and the Hamiltonian is —u e—rkZT
k ~ Uk

u
t) = [k2el Kt=2 4.8
Pi(®) Sinh TK2T (4.8

1 #u
H :—fdxp(p+21“—2+4l“kéu(l—u2)>. 4.3
2 Ix Likewise, the HamiltoniarH decomposes into independent

The equations of motiot.1) and(4.2) determine orbits ina k-mode contributions
multidimensional phase spada(x),p(x)} lying on the en- dk
ergy manifolds determined by E@t.3); for open or periodic H :f —ppc— 2TK2u,]. (4.9
boundary conditions the orbits are, moreover, confined by 2m

the conservation of the total momenturh given by Eq.  |nserting the solutiong4.7) and(4.8), we obtain specifically
(3.11). From an analytical point of view the field equations for the energy of théth mode

(4.2) and (4.2) are in general intractable. Even numerically,

the negative diffusion term in E@4.2) renders the coupled _ (TK?)? Jug® + |uyd® - 2ug iy coshTk*T
equations highly unstable, as was noted in the numerical k=™ o sint? TK2T

analysis of the Burgers equati)28].

(4.10

The orbits lie on the energy manifolds given Ey:p;[pk

It is instructive first to consider the easily discussed linear-2I'k?u,]. In the long time limitT— o the orbits migrate to
case of simple diffusion for smal,. Thus ignoring the non- the zero-energy manifolds consisting of the transient sub-
linear potential terms in Eqg4.1) and (4.2) we obtain the  manifold p,=0 and the stationary submanifofsi=_2I'k?u,,

A. Linear diffusive modes

linear equations and pass asymptotically through the hyperbolic fixed point at
Ju 2u (U, Pl =(0,0), determining the stationary state. In Fig. 3 we
—=I'—+p, (4.4 have shown the orbits for a particulamode in a plot ofpy
Jt X versusuy.
Finally, the conserved momenturh and the actiors fol-
wp__ P (4.5 low from Eqs.(3.13 and(3.10:
- 2 .
at JX
_[dk, .
generated by the Hamiltonian = ZT(‘ k) Py Ui (4.1
1 #u
H=—dep[p+21“—2}. (4.y and
2 ax )
) . . dk . o[ux - uye T2
In Fourier space, settingu,=/dxexp(—ikx)u, and p, S=| —Tk—————, (4.12
2 1—g KT

= [dx exp(-ikx)p, U, =u_, andp,=p_, the equations of mo-
'Eié)%)decompose and we arrive at the orbit soluiisee Ref.  yielding the transition probability fronoiy, to uy, in time T,
_ -TK°T|2

Uy SINhTK?t + uysinh Tk(T - t) @7 P(Uy, Ug T) o exp[— 1 f dka2|u2k uye” |
sinh TK2T ' A

2 1 —g 20T

u(t) =
from uy at time t=0 to uy at time t=T; u, (4.13
= [(dk/2m)exp(ikx)u; ox. The noise fieldp, is slaved to the In the long time limitT—« we reach the stationary distri-
motion of u, and given by bution
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1 ( dk J S 8F\?
Pst({uk})mexp{-gfszzluklz] (4.14 a_i):r25<£> , (4.17

which are consistent sing&i/gt=(1/2)p. It is interesting to
ThIS result iS Consistent W|th the noise'driven diﬁusion equa'notice that the motion aﬂ on the Stationary noisy submani-
tion written in the form du/dt=-T6F/ou+n, (mm)  fold p=2I'(5F/du) is a time-reversed version of the motion
=As8(x)(t), with free energyF=(1/2) fdx(du/dx)%. Invok-  on the transient submanifol@=0. Finally, on the zero-
ing the fluctuation-dissipation theorem we then obtain arenergy manifold the action in Eq3.6) takes the form
equilibrium distribution given by the Boltzmann factor S=[dx dt pgu/dt=2T" fdx di{du/dt)(sF/du)=2TF, yielding

exp(-F/T), A=2I'T, consistent with Eq(4.14). the stationary distribution in Eq(2.5) for the noisy
In summary, in the linear purely diffusive case the con-Ginzburg-Landau equation.
figurationsu(x,t) decompose into independekitmodes. In In the absence of a fluctuation-dissipation theorem, as is,

the dynamical phase space approach the ngisi#iving the  for example, the case for the kinetic Kardar-Parisi-Zhang
individual k modes is replaced by the noise figlg which  (KPZ) equation in one dimension or, equivalently, the noisy
couples parametrically to the time evolution of themode.  Burgers equation, we can in general not explicitly identify
In a transient time regimey is damped according to the the stationary zero-energy submanifold and thus simply de-
diffusion equation and the orbit in phase space lies close teermine the stationary state; an exception is the KPZ equa-
the transient or noiseless submanifpid=0 and approaches tion in one-dimension where for special reasons a
the saddle poinuy,p,) =(0,0). At longer times the growing fluctuation-dissipation theorem is availablésee Refs.
noise fieldpy drivesu, away from the saddle point, and the [23,24,395).

orbit approaches the stationary or noisy submanifpid In order to address nonequilibrium properties such as a
=2I'k?u,, i.e., the distribution associated with the noise-specific transition probability from an initial staig to a
driven diffusion equation approaches a stationary distribufinal stateu, in passage tim& we must address the nonlinear
tion. In the limit T—o the orbit passes asymptotically equations of motiorf4.1) and (4.2). The field equations are
through the saddle point and the orbit framy to u,, lies on  not integrable and do not yield a general analytical solution.
the zero-energy manifolds determining the stationary state.However, we can advance our understanding by first search-
ing for static solutions on the transient manifge0, i.e.,

the solution of the equatioAF/su=0 yielding according to
Eq. (2.6) the domain wall solutions in E@2.7). The domain
}all excitations are of the instanton type and can be located

In the nonlinear case the phase space representation of t ' = )
noise-driven Ginzburg Landau equation is given by thedt arbitrary positiongsee Ref[36]). Since the overlap be-

coupled field equationg4.1) and (4.2) determining the or- Ween two well-separated domain walls is exponentially
bits. As in the linear case we can identify the zero-energﬁma” we can construct approximate multi-domain-wall solu-

submanifolds determining the stationary state. This is relatefons of the form

B. Domain wall modes

to the existence of a fluctuation-dissipation theorem for the n

noisy Ginzburg-Landau equatig.1) expressed by the ex- Ugw = > o, tanhkgy(x = X;) + Ug, (4.18
istence of a free energy. From the Hamilton{&rD) we infer i=1

tentatively the zero-energy submanifolds=0 and p

=2I"6F/ éu. The transient noiseless submanifpldO is con- Pgw = 0. (4.19

sistent with the equations of motion, and the configurations

decay according to the damped deterministic GinzburgHere the parity index;=+1 for right hand and left hand
Landau equation domain walls, respectively, andg indicates the center of the

domain-wall. The offsetip=0 for multi-domain-wall con-

figurations overlapping for largex| with two different

ﬂ:_rf (4.15 ground state configurations ang=+1 for configurations

at ou’ ' overlapping with identical ground statas +1, respectively.

Assuming that the inter-domain-wall distanpe—x;,4| is

Note that in contrast to the linear case, whereutwnfigu-  |arge compared with the domain wall width Kb/ i.e., the

rations decompose ik modes which decay according to €ase of a dilute domain wall gas, the expressii18 con-

u, = exp(-I'k2t), an initial configurationu, in the nonlinear ~Stituteés an approximate solution to K@.6). Since the do-
case will in general decay forming a pattern of interacting™ain wall solutions are associated with the transient sub-

and annihilating domain wall configurations with superim-manifold p=0 it also follows from Egs(4.3), (3.11), and
posed diffusive modes. (3.10 that they carry vanishing energy, momentum, and ac-

The stationary submanifolg=2I"sF/u inserted in Eqs. tioN Within the canonical phase space approach.

(3.7) and(3.8) yields the equations
V. DOMAIN WALL DYNAMICS

@_F‘SF (4.16 In order to impart dynamical attributes to the domain

at &’ walls and thus provide solutions to the coupled field equa-
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tions (4.1) and (4.2) we perform a linear stability analysis k2 + k3 — 3K3 tanif kox + 3ikk, tanhkgx
about the static domain wall solutions. s(x) = (k- iko) (k-2 .
ikg) (k = 2iko)
A. Dynamics of a single domain wall (5.19

Setting U=Ugy*+ du and p=pgy+ P, Pay=0 in Egs.(4.1)  The complex space-dependentnatrix s(x) gives rise to a
and (4.2), we obtain to linear order the coupled equations SPace and phase modulation of the plane wave modex For
——oo we have s(x)— 1, whereas forx—o~ we obtain

2 . . .
dou =F@ +2TIE(1L - A2, U+ Op, 5.1) su(x) —exdi (k) lexdisy (k)] where the phase shifts,

at Ix? =2 taril(ky/k) and §,=2 tan’(2k,/k) are associated with
the depletion of the band due to the formation of the bound

aop #Pop ) 5 states¥, and ¥, respectively. In terms of the expansion

T FW - 2I'kg(1 = 3ug,) p. (5.2 coefficientsu, andp, the HamiltoniarH, momentunil, and

actionSin Egs.(4.3), (3.1, and(3.10 are given by
Noting that in a Schrddinger equation analog the domain
wall profile uy,, gives rise to a Bargmann type potential, Egs. H = 12 pa(Pn = 2T\ Uy, (5.12
(5.1 and (5.2) are readily analyzedsee, e.g., Ref[34]). 25"
Expanding du and ép on the eigenfunctionsV, of the

Schradinger operator
3 =2 p, J dXUyy V W, (5.13
D=-V?+2K3|2-———|, 5.3 "
ko[ costt kox} 3
. 1 .
according to S= 52 Jdtpnpm (5.14
n
su= > u\w,, (5.9 , ) .
n expressing the dynamics of the various modes.
5= 2 0w, (5.5) 1 Do.main wall motion .
n The modeW¥, with eigenvalueny=0 plays a special role

since it is associated with the uniform translation of the do-
main wall. Forhny=0 the equation of motion&.6) and(5.7)
take the formduy/dt=py, and dp,/dt=0 with solutionsug

the time-dependent expansion coefficiemtsand p,, are de-
termined by the coupled equations of motion

du, =pot, po=const. For the fieldi associated with the modg,
dt == I\ + Pn, 5.6 we haveu=ugy,+uy¥,. Inserting¥, and uy=pgt we obtain
3 1/2
dp, u:udw"'poo't(TkO) k(SlV U  Ugn(X = 01),
E = 1—‘)\npnv (5.7)

(5.1
\;VQ:\LT'I‘E:;UEE%??; gvgwg(éﬁghﬁas'eg?hnevigﬁ:gﬁﬁ?ﬁg as describing a domain wall propagating with velocity
the Fourier transformed versions of E¢4.4) and (4.5 in 3 \12
the case of the linear diffusive modes, and the solutions are v=- PoU(IO) o
given by Eqs(4.7) and(4.8) with T'k? replaced byI'\,,. The
canonical phase space structure Wikt replaced byi'\,is  The modeV¥, is the well-known translation or Goldstone
depicted in Fig. 3. mode restoring the broken translation symmetry associated
The spectrum ob in Eq.(5.3) is composed of two bound with the localized domain wall mode. In the present canoni-

statesW, and ¥, with eigenvalues\,=0 and\,=3k3, re-  cal formulation the translation mode also implies the propa-
spectively, and a band of phase-shifted plane wave solutiorgation of the domain wall.

=+1. (5.16)

W, with eigenvalues\, =k?+ 4k It is also instructive to consider the noise figddvhich in
12 the dynamical description corresponds to the najsén the
W, = (%) 1 \o=0 (5.9 case of a single domain wall we obtain from 8[.5) a static

4 cosit kox’ ’ configuration. It is, however, clear that the noise field must

move together with the domain wall configurations, and we
3Ky \ 2 sinh kox 5 conclude that terms beyond linear order give rise to a renor-
V=7 .o M=3, (5.9 malization of the noise field profile implying a finite propa-
2 ) coslt kox : o
gation velocity, i.e.,

1\2
qu:<—> g (x), N=K+4AK,  (5.10 p (5.17)

1
27 “Pocosi? Ko(x—vt)
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u a) P=Pgwt P; Paw=0, we obtain for a dilute domain wall gas
+ g . the coupled linear equations
| PRV 2Y . 1
-1 — =I— +2IK3| -2+3>, —5——— | du+ op,
at IX? kol g{ coslit ko(x—xi)] op
p b) (5.22
, X 9p Pop ) . 1
—=-I'—-2I'k§| -2+3>, ———— ,
\]L, at X2 ko z coslt kg(x — X)) op

(5.23

FIG. 4. In(a) we show a right hand domain wall mmoving  which are analyzed in terms of the spectrum of the
with velocity v. In (b) we depict the associated impulsive noise Schridinger operator
field p. N .

P : ” D=-V2+2k3| 2-3> ———— |, (5.24

The noise field is thus localized at the position of the ko 21 costt ky(x - ;) ( )
domain wall corresponding to a noise impulse associated ) ] )
with the formation of the domain wall. In Fig. 4 we depict a With identical well-separated potential wellsxat Expanding
single moving right hand domain walndex o=1) with as-  6U and 6p on the eigenfunction®, of D, DW=\ ¥, we
sociated noise field. The dynamics of a single domain wall€cover the equations of moti@6.6) and(5.7).

follows from Egs.(5.12—~(5.14); we have The eigenstate¥, are readily expressed as linear super-
positions of the eigenstates for the individual potential wells,
Eo= %pé, (5.18  and we obtain the translation modég with eigenvaluex,
=0, the deformation modeg; with eigenvalu@\1:3k§, and
4k, \ V2 the extended plane wave modds with eigenvaluesiy
Ho==poo|\ = | (5.19  =K2+4i3,
3
nooo . 1
_1 Vy= Vo, Yook ——m—, 5.2
So— ZTp(Z) (520) 0 EAO 0 0% COSFF kO(X_Xi) ( a
In terms of the propagation velocity we have Il
:(4/3)kov andiwe can agsociate an effective méegg3)k, v —En‘,Ai ¥ v sinh Ko(X = %)) (528
with the domain wall motion, 1= < 15 1 17 Cosif ko(x— X))’ .
m= gko; (5.2
n
note that the mass vanishes in the limit of a broad domain V, = oI SX=x),  S(X)
wall. i=1
2,12 _ a2 ;
2. Deformation and extended modes _ k? + k5 — 3k§ tanit kox + 3ikk, tanh kox. (5.27

The bound statéV; given by Eq.(5.9) is odd and ac- (k= Tko)(k = 2iko)
counts for the symmetrical deformation of the moving do-In terms of the individual eigenfunctions the expansions of
main wall. The time dependence ofis given by Eqs(4.7) éu and ép take the forms
and(4.8) with T'k? replaced b;I‘)\1:3Fk§. The band of plane .
wave solutions in Eq5.10 corresponds to corrections to the ou= E U, Upi = U, (5.28
leading and trailing edges of the domain wall. The modes n
have diffusive character with growing and damped time be- _
havior and are given by Eq$4.7) and (4.8) with T'k? re- o= Pni¥h,  Uni = PrA, (5.29
placed byl"(k?+4k2); note that in the limik,— 0 we recover ni
the linear case. The extended modes are phase shifteghd we obtain the equations of motion
2 tart(ky/k) +2 tarr(2ky/k), which by Levinson’s theorem

corresponds to the two bound states, the translation mode dup,i = TN\ Uy + Py (5.30
and deformation mode, being depleted from the band. dt e e '
. . . . . dp.:
B. Dynamics of multi-domain-wall configurations GPni =T \pPnis (5.3

. . . . dt
In the multi-domain-wall case the analysis proceeds in a
similar manner. Expanding about the static multi-domain-with solutions given by Eqg4.7) and (4.8). Moreover, the
wall configuration in Eqs(4.18 and(4.19, u=ug,+du and  dynamics of a multi-domain-wall configuration is given by
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1o -
H = 2.2 oi(Pni = 20Ntk (5.32

ni
n=2 pninXLhWV i, (5.33

ni

1 *
§=22 | dtmpni. (5.39
ni

For the translation mode in particular we hae;/dt=py;,
dpg/dt=0, yielding ug=pgit and we obtain

12
U=Ugyt+ poﬂﬂ(?) ko' V Ugy,  Ugn(X — vit),

PHYSICAL REVIEW E70, 031105(2004)

+1

0 L

FIG. 5. We show the transition from the ground state-1 to
the ground statei=+1 in a system of siz& in time T due to the
nucleation of a domain wall pair at the center of the system.

uniform ground states=+1. In the ground state Eg4.3
implies that the energy is given y=(1/2) [dx p*. Conse-
quently, in order to generate domain wall pairs out of the

(5.35 ground state we must assign a finite noise figldn Fig. 5
) ) . we have in a plot ot versusx depicted the transition from
with propagation velocity the stateu=-1 to the statai=+1 due to the formation of a
3 \12 domain wall pair. The system is of siteand the transition
v :—poai<4—) . (5.36 takes place in timdl. In Fig. 6 we have shown the corre-
Ko sponding propagation of the domain wall pair receding from
Likewise, the dynamics of the domain wallgtis given by  the nucleation zone with opposite velocities together with the
1 associated noise field. According to E@5.16) and (5.17)
Eoi = 3P0i (5.37) the noise field profiles comoving with the domain walls are
positive and have the form 1/cdsky(x—ut).
4k0 1/2
HOi:_pOiO'i<?> : (5.39
VI. STOCHASTIC INTERPRETATION
1 2 The domain wall gas picture introduced above allow a
S=2TPo- (5.39 systematic dynamical approach to the determination of ki-

Summarizing, the linear analysis of the static domain wallnetic pathways and to the evaluation of the Arrhenius factors

configuration leads to a picture of a dilute gas of propagatingsSociated with the transitions. The approach, moreover, per-
domain walls. Superposed on the domain walls are localizefits @ straightforward stochastic interpretation making con-
deformation modes and extended modes of diffusive charadact with the customary discussion of the noisy Ginzburg-
ter. The time evolution of the domain wall-linear mode gas isk@ndau equation.

moreover subject to three constraints): the topological sig-
nature of the domain walls implies that a right hand domain
wall is matched to a consecutive left hand domain w@y,
translational invariance implies that the total momentiim
given by Eq.(5.33 is conserved, anB), finally, time trans-
lation invariance entails that the total eneifgygiven by Eq.
(5.32 is a constant of motion.

A. Domain wall random walk

In the case of a single domain wall the dynamics follows
from Egs.(5.6) and (5.7) for A\y=0, i.e., the equations of
motion duy/dt=p, and dpy/dt=0 with solutions uy=pt,

u a)

+1 4

C. Domain wall nucleation and annihilation

.
The above analysis of the dynamics of the domain wall— _1_j L
diffusive mode system is restricted to the dilute gas regime.

However, the topological constraints together with the con-

servation laws allow a heuristic analysis of domain wall col- b)

lisions. When a right hand domain wall collides with a left P

hand domain wall the topological constraint implies that they 7[\ ]]Y

must annihilate to the uniform ground states +1 or u= s s X

-1. Moreover, since Eq3.11) implies that the momentum

IT=0 for u=+1, the domain wall pair prior to collision must

move with equal and opposite momenta, i.e., equal and op-

posite velocities. Since the phase space formulation is time- F|G. 6. In(a) we show the domain wall pair propagating away
reversal invariant we also infer that pairs of oppositely mov-from the nucleation zone. Ifb) we show the associated comoving
ing domain walls of opposite parity can nucleate out of thenoise field profiles.
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Po that the distribution in Eq(6.5) is obtained in the limitl’

4 E>0 —0 from the overdamped oscillator distribution in Eq.
(4.13. We conclude that the uniform or ballistic motion of a
domain wall within the dynamical description corresponds

Eo=0 ) . .
T, o Ty, precisely to the ordinary random walk of the domain wall
within the associated stochastic description.
E>0 The random walk behavior of a domain wall also follows

easily from the Ginzburg-Landau equati¢2.1). Inserting
FIG. 7. We show the orbits in th@ig, p,) phase space in the the fluctuating domain wall ansatxx,t)=tanhkg[x—-x(t)],

case of domain wall motion. The finite-time orbits lie on the finite wherex(t) is the time-dependent center of masand noting

energy manifoldsEy=(1/2)p3. In the long time limitT—o the  that&F/5u=0 for a domain wall, we obtain, integrating over

orbit from u; to u, migrates to the zero-energy manifdig=0. space, settingy(t)=fdx 7(x,t),
po=const. The energ¥, momentumll,, and actionS, are dx_(t) x (1), (6.6)
given by Egs.(5.18—5.20), respectively, and the orbits lie dt

on the energy manifoldBo=(1/2)p5. In Fig. 7 we have de- \yhich is the Langevin equation for a random walk.

picted the phase space for the motion of a single domain |t s aiso straightforward to include the contribution to the
wall. The plot dep|(:2ts orbits fron; to u, in time T on the  giochastic behavior from the deformation and diffusive
manifold Eq=(1/2)p,. In the long time limit the orbits mi-  \,0des associated with the domain wall. From E412
grate to the zero-energy manifditi=0. The phase space plot applied to the local deformation moddef) u, and the dif-

is a degenerate limit of the phase space plot in Fig. 3 fokysjve modes(diff) u, we obtain for the total action for a
ko—0. We note the absence of a stationary zero-energyressed domain wall

manifold and saddle point yielding a stationary state. Since
the momentunil, according to Eq(5.19 is proportional to S=S+ Syer+ Suitr» (6.7)

the canonical momentuipy it follows directly from the ca- P
nonical structure that the conjugate variabldgis the cen- where, is given by Eq.(6.4) andSym ands, by

ter of mass positiony of the domain wall. From the Poisson (Upy - ulle—srkgT)z
bracket {up,pgt=1 and {xg,I1o}=1 together with IIy= Sief= 3Fk(2) ey (6.9
~a(4ko/3)2py, We infer uy=—cm*%,, m=4k,/3, and the 1-e™"
ensuing equation of motion .
dk |U -u e—F(k +4kO)T|2
d = R 2 2\ Y2k 1k
md_Xto =Il,, (6.1 St f ZWF(k +4k0) 1 — g 20+ 4QT (6.9
with solution For the transition probability from an initial dressed domain
wall configurationu;(x) ={x;,U;1, Uy} to a final dressed do-
Xo = EDH const. (6.2 main wall configuratiornu,(x) ={x,,u,1,uy} during the time
m interval T we finally obtain
Likewise, the energy and action are giventy=IT35/2m and P(ug, Uy, T) = PoPyuePuitt» (6.10
SO:TH—(%. 6.3 where Py is given by Eq.(6.5) and Pyesec exd —Sye/ A] and
2m Pyitr > exd —Syir / A]. In the long time limitt— oo the domain

wall performs a random walk, whereas the deformation

The stochastic interpretation of the phase space dynami?ﬁode and diffusive modes attain a stationary state, i.e.

readily follows. Considering an orbit fromy to x, traversed
in time T, corresponding to the propagation of a domain wall myé 3Fk§u§
with center of mass positiog, at timet=0 to the center of PO, T ug, {uyd) o exp — —— A
mass positiorx, at timet=T, and inserting the solutiof®6.2)

in Eq. (5.20), we obtain 1 ( dk
a-(5-20 X ex ——f—l‘(k2+4k(2))|uk|2 .
w2 AJ) 27w
SO:lm(XZ Xl) (6 4)
2 T ' (6.11

yielding the transition probability fronx; to x, in the time
interval T: B. Domain wall gas

m (X, — %;)? In the case of a dilute domain wall gas with associated

P(x1,X5, T) o« exp = oA T (6.5 linear modes the discussion above applies in a generalized

form. From Eqgs.(5.30 and (5.31) for A\g=0 we obtain the
This is the Gaussian distribution for random walk with root equations of motiorduy/dt=py and dpy/dt=0 with solu-
mean square deviatiog,.=(2TA/m)*2, m=4k,/3. We note  tions Uy =pyt+const, ps=const. The energy, momentum,
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and action are given by Eq&.37—5.39, respectively, and a
each domain wall lies on the corresponding energy manifold
Eo=(1/2)p5. For each domain wall the phase space plot in
Fig. 4 thus applies. Since the action in E§.34) is additive
with a contribution from each domain wall the transition

minimum F=0 F=m F=0 minimum

probabilities factorize and we obtain for the random walk u=-t saddepaint  u=+1
part from Eq.(6.5) u=Upy
2
mM(Xi = X F
P({xa} b ) o I exp[— M] . (612 &
[ 2AT A m_ B
Likewise, the contributions from the deformation and diffu- \ f \ } "
sive modes follow from Eqg6.8) and(6.9). u=-1 u=+1
VII. KINETIC TRANSITIONS " A B 0
+1
In the preceding sections we have established the dynami- [ ‘-' X
cal framework in the case of the noise-driven Ginzburg- _1_J_ ________ J
Landau equation and established the connection to the cus-

tomary stochastic interpretation. In summary, the domain — have | . lot sketched the f
wall gas picture provides a description of a switching sce- -8 In(a) we have in a contour plot sketched the free energy

A . - ._landscape in the case of a single static domain wall overlapping for
nario in terms of moving right hand and left hand domamlarge|x‘ with the ground states=—1 andu=+1. The points A and

walls wiih associated linear modes. The dynamical approacfb indicate two distinct positions of the domain wall, corresponding

moreover, implies that the kinetic pathway from an initial to the translation mode. I(b) we have sketched the free energy as

Conflg.uratlo.n.to a fln_al configuration is assoc,'ated Wlth a%f%ction ofu. Theu axis labels collectively the(x) configurations
specmc orbl_t in canonical pha;e space. The aqtlon aSSOC'at the free energy landscape. The points A and B refer to the domain
with the orbit yields the Arrhenius factor associated with the,ya positions. Since the free energy of the domain wall is indepen-

transition. The domain wall gas picture shows that a class ofient of the center of mass position, the landscape exhibits a con-

orbits, i.e., a class of solutions of the field equations can b@tantF ridge. In(c) we have depicted the corresponding domain

parametrized in terms of a dilute gas of propagating domaifyall configurations at center of mass positions A and B.

walls with superimposed local deformation and extended

phase-shifted diffusive modes. This picture is derived from

linear analysis and only holds priori in the dilute gas limit conditionsu=0 atx=0 andx=L for a system of sizé the

and at short times. As discussed below, the domain wall dygqq |, grows to the uniform values=-1 oru=+1 over a

namigs at later times. can be extracted heur.istically from Ehealing length of order 1. Imposing periodic boundary

combination of selection rules and conservation laws. conditions, we infer that the healing profile corresponds to a
half domain wall and that the free energy of the configuration

A. Equilibrium equals 2< (1/2)m=m. Finally, for skew boundary conditions

Before we discuss kinetic transitions it is instructive first With u=-1 forx=0 andu= +1 forx=L, the state with lowest

to discuss the equilibrium properties briefly. In equilibrium free energy corresponds to a single domain wall with free
the free energy landscape is determined by the structure hergym. The different scenarios are depicted in Fig. 9. In
F(u) in Eq.(2.3). The complex landscape is characterized bythe presence of noise fak+#0 the ground states become
the presence of two global minima corresponding to the uninetastable and the system populates the excited states with
form ground states= +1 andu=-1 and an infinity of saddle F # 0. The partition function provides a global characteriza-
points corresponding to static nonuniform multi-domain-walltion of the equilibrium excursions in the free energy land-
configurations. The flat parts of the saddle points correspong@cape and is according to E@.5) given by

&iniform ground states=+1. Imposing vanishing boundary

to the translation modes associated with the domain walls.
The free energyF=0 for the ground states. For an Z:Eex —EF(U):|, (7.
n-domain-wall configurationF=nm, where the masam {u}

=4ky/3. In Fig. 8 we have sketched the free energy land-

scape associated with a single static domain wall connectinghere the configuratiofu} has the free energly(u), yield-
u=-1 andu=+1. In the case of zero noise fdt=0 the ing the Boltzmann factor in Eq.7.1). The evaluation oZ
system starting from an arbitrary initial configuratiag(x) and associated correlations, e{@u)(x,t), in the dilute non-
approaches the state with lowest free energy compatible withverlapping domain wall gas limit follows closely the well-
the imposed boundary conditions. The relaxational dynamicknown soliton and instanton methods developed in the 1970s
is governed by Eq(4.15 and corresponds in the dynamical and used in Ref[34] for the classical easy-plane ferromag-
approach to an orbit confined to tlpe=0 zero-energy sub- net. Expanding the free energy defined by E@3) and
manifold. For open or periodic boundary conditions the con<{2.4) about ann-domain-wall configuration we have, setting
figurations with lowest free energy are the two degenerate=ug,* du, F=F(ug,) +(1/2)suDdu. Using F(ug,)=nm, in-
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u | a)
|
+1 :
| X
L
-1 :
|
|
u : b)
|
Il
L
\' X N
he % T2 4 6 8 10
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FIG. 10. We show the domain wall density,, in units of A/2I"
u | ©) as function of the noise strength in units of 'm. The density
+ ' vanishes in the limitdA — 0 andA — o and exhibits a maximum at
f : X 4ml’/3.
/ iL
- ! order to regularizeZ at small distances. Note that in the
|

treatment in Ref[34] the lattice distance of the magnetic
chain provided a natural small scale cutoff. Replacing the

FIG. 9. In(a) we have shown the ground state configurations . K b . | di h .
with F=0 in the case of open or periodic boundary conditions. Ins.ummatlon ovek by an integral according to the prescrip-

(b) the lowest configuration with fixed boundary conditions havetlon 2 — Jdkpy, Where_l the densny_lof statep=L/2m

F=m. In (c) we show the lowest spatially degenerate domain wall™ ("/2m)dé/dk, 6=2 tarm=(ko/k) +2 tarm(2k/k), and sum-

configuration withF=m in the case of skew boundary conditions. Ming over domain walls the partition function factorizes into
a diffusive part and a domain wall part, incorporating also

sertingD from Eq. (5.24), and expandingdu on the eigen- the contribution from the localized deformation modes,

functions¥,,, we obtain Z=ZgittZaw (7.9
1
F=nm+ -2 \j|u,l%. 7.2 LA 7A
2% n| n|| ( ) Zdiff =eX —|n7T— y (76)
27 TA

Introducing a domain wall chemical potentja},, in order to

control the domain wall densities we arrive at the grand par- r \v2 or
/2,
tition function Zgw= 2 exy 8LK] A Ay (gw =) | |

- 2r 1 (- (7.7)
z ZnE:O & A g m)] n! .1:{ duo,dul,]_k[ A In a thermal environmenk=2I"T and the partition function
N n gives direct access to, e.g., the specific heat. We shall not
xexp| - I NS 2+ 0 S 2 NS U2 pursue this calculation here except to note that the gap in the
A\ T0g 0T e i e TR ] domain wall excitation spectrum gives rise to a Schottky

anomaly in the specific heétee, e.g., Ref34]). Noting that
(7.3 the number of domain walls accessed by the stationary fluc-

The overall factor of 2 arises from the double degeneracy ofuations is undetermined, it is, however, instructive to evalu-

the ground state and the domain walls connecting the groun@te the domain wall densityy,. From the structure o we

states. The\,=0 eigenvalue yields the translation mode andinfer nq,=(A/2I)(d log Z/du) = and inserting Egs.

it follows that duy =m“2dx, wherex; is the position of the (7.9—7.7) we obtain, settind,=3m/4,

ith domain wall. The factor I takes into account the or- AV/3r |32 or

dering of the domain wall when integratixgover a system Ngw = 877‘1’2(—)<—m> exp(— —m). (7.9

of sizeL. Performing the Gaussian integrals over the defor- I'/\4A A

mation and diffusive modes we have in more reduced formrpe gomain wall density vanishes in the limils—0 and

= 4 oT A—c and exhibits a maximum foA~I'm. We have de-
Z=2> —exp| —n(ugy- m)] pictedng, as a function ofA in Fig. 10.
o N! A

/2 B. Transitions in the Kramers case
s(maye T2 o 15 n TR | (7.4 . e ineti itions |
'\, 29 T I | Before turning to the noise-induced kinetic transitions in

the Ginzburg-Landau equation it is instructive to review the
We have introduced the large wave number uv cutofin  classical Kramers theorfp,37] for a single degree of free-
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F
a) Pg = exp{— %F] (7.12

in accordance with Eq2.5), showing how the free energy
A B profile is globally sampled in the stationary state.
In order to evaluate the transition rate from, say, the state
' : u u=-1 to the statai=+1 across the free energy barrke(0)
we follow Kramers and set up a constant probability current
p b) J across the barrier generated by a source to the left of the
barrier, in regiorA and absorbed by a sink to the right of the
dF barrier in regionB. From the conservation lawP/dt
du +dJ/ou=0 and Eq(7.11) we derive the current

7///—\O\/M/— J=-JA— - -T P, (7.13

Assuming a sink at, >0, we obtain the steady state solu-

tion
JL(AER o 20 [ or e or
2(du P(u) = XeXp<_ XF(U)>JU dwexp(KF(u')).
(7.19
-1 A B +1 Setting up a population=/°_ duP(u) to the left of the bar-

:\jﬁ \,/: u rier the rate is given bk=J/n and we have

w3 el [ ool
K =2 _wduex AF(u) ) du’ ex AF(u).

FIG. 11. In(a) we show the double well structure of the free (7.19
energyF. In (b) we show orbits in the canonical phase space. Th
zero-energy manifolds afg=0 andp=2I"dF/du, intersecting at the
saddle pointgu,p)=(-1,0), (0,0), and(1,0). In (c) we show the
inverted double well potential entering in the Newton equation de
scription of the transition.

eFinaIIy, a simple steepest descent calculation for0
yields Kramers’ celebrated result for the rate in the over-
damped Smoluchowski limi§”=d?F/dw?,

r r
k=__[F"(- DIF"(0)1*? eXp(— XF(0)>. (7.1
dom, which can be analyzed completely, and its formulation &

within the canonical phase space approach. The rate is determined by the Arrhenius factor exp
[-(2I'/A)F(0)] depending on the height of the barrier and
1. Kramers theory the prefactonI'/2m)[F"(-1)|F"(0)|]*?. Here the double de-
We consider the overdamped case characterized by tH&vative F” can be associated with the oscillation frequencies
Langevin equation for one degree of freedam mothe potential well au=-1 and about the maximum at
du_ _dF
E B _F$ * (7.9 2. Dynamical interpretation of Kramers theory

Here we discuss the Kramers escape problem from a po-
() n(0)) = A1), (7.10  tential well within the canonical phase space method. Ac-
cording to the general formulation in Sec. Il the Hamil-

with kinetic coefficientl’ and noise strength; in thermal tonian associated with the Langevin equatigt®) has the

equilibriumA=2I"T, whereT is the temperature. For the free

energyF we assume a double well profile with maximum form
F(0) at u=0 and minima au=*1 with F(£1)=0. The free 1 dF
energy is depicted in Fig. 18). The Fokker-Planck equation H= —p(p - 2F—), (7.1
associated with Eq$7.9) and(7.10 has the form 2 du

9P 1 #P o/ dF yielding the equations of motion

—== —2+—(F—P). (7.19)

Jt 2 Ju® Ju\ du du dF

. —=-T—+p, (7.18

We note the stationary state féP/dt=0 dt du
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dp _d°F
a: ﬂp, (7.19)
and the associated action
u,T
' d
Su,T) :f dt{pd—l:— H]. (7.20

For the normalized transition probability we have

PHYSICAL REVIEW E 70, 031105(2004)

Focusing on a kinetic transition or switch between the two
ground statesi=—1 andu=+1, the pathway corresponds to
nucleation of domain walls and their subsequent propagation
across the system. Let us first consider the case of fixed
boundary conditionsi=0 atx=0 andx=L. The ground state
configurations are depicted in Fig(k9. In the presence of
noise the ground states are metastable and the system can
switch fromu=-1 tou=+1 by means of the propagation of
a single domain wall across the sample in the transition time
T. As discussed above the profiles close to the boundaries

P(u,T) = (7.21)

exd - S(u,T)/A]
over a healing length of orddatyg1 correspond to half domain
fdu exd - S(u,T)/A] walls, and the free energy of either ground state is equal to
Faw=m, m=4k,/3; note that for periodic boundary condi-
In Fig. 11(b) we have depicted the phase space for the Kramtions as depicted in Fig.(8) the free energy of the ground
ers escape case. The zero-energy manifolds are g|an bystates vanishes. In order to effectuate a transition a domain
=0 and p=2I'dF/du. On the phase space plot we haveWwall must nucleate at either boundary and subsequently
shown an orbit from regioA to regionB, i.e., across the free Propagate across the system. The nucleation free energy is
energy barrier. Comparing F|g@w|th F|g 11(b), we note FdW:m and from our discussion of the Kramers case we
that the “uphill” part of the orbit in regior is controlled by  infer the Arrhenius factor exp2l'm/A) or within the dy-
the p=2I'dF/du manifold, whereas the “downhill” part in Nhamical description a nucleation action of the order
regionB is controlled by thgg=0 manifold. In the long time
limit the orbit approaches the zero-energy manifofsO
and p=2I"dF/du passing close to the saddle pointsuat
-1, u=0, andu=1. A simple calculation along the “bulge”
settingH=0 and insertingp=2I"dF/du in Eq. (7.20 yields
the Arrhenius factor

exp[—%F(O)},

in accordance with Kramers’ result in E(..16).
Finally, eliminatingp in the coupled equation§.18 and
(7.19 we obtain the Newton equation of motion

du

Swe=2I'm. (7.24)

Within the conventional stochastic description the noise gen-

erates both the nucleation and the subsequent diffusion of the

domain wall across the sample. Since the domain wall car-

ries a finite energy we must within the dynamical description

assign a finite energy or finite noise figdtk) att=0 in order

to ensure propagation of the domain wall. Considering the

case where the right hand domain wall nucleates=i, we

assign the noise field(x) < py/ costt kox given by Eq.(5.17)

at timet=0. In terms of the momenturfl,=-p,m*? given

by Eg. (5.19 we thus obtain the velocity =I1,/m, energy

) Eo=I13/2m, and action by Eq(6.3), i.e., S =TII3/2m. The

il _in[_ }(d_':) } constraint that the system of sizeis switched at timeT

dt? dul 2\du moreover impose a selection rule on the propagation veloc-
ity. We inferv=L/T and obtain the actiof,=mL?/2T asso-

for the motion of a particle of mass I[7 in the potential ; . o . . _
a 2 . ., ciated with the transition. The total action associated with a
(1/2)(dF/du)=. In Fig. 11(c) we have shown the potential %ingle domain wall switch is thus given by

which for a double well free energy possesses three maxim
atu=0 andu==1. As indicated in Fig. 1) the long time mL2
orbit from A to B is associated with the long waiting time at SiI(T) = Shwa+ T
the maximum foru=0.

(7.22

(7.23

(7.29

In Fig. 12 we have irfa) depicted the propagation of a single
right hand domain wall across the sample.(ln we have

In order to induce a nonequilibrium kinetic transition shown the transition in atx,t) plot. In the present case with
across the free energy landscape in the Ginzburg-Landaiixed boundary conditions the momentuig associated with
case we fix the initial configuratiom(x) at timet=0 and the  the motion of the domain wall is generated at the boundary
final configurationu,(x) at timeT. There are two fundamen- x=0 at timet=0 and, subsequently, absorbed at the boundary
tal issuesi1) the determination of the kinetic pathways and x=L at timet=T. The momentum is given by E¢5.13), i.e.,
(2) the evaluation of the transition rate. Generally, in order tolly=pgJ dxuy,d¥o/dx. Inserting¥, and ug, given by Egs.
minimize the free energy cost, the pathway passes via sadd{.8) and (2.7), respectively, and performing a partial inte-
points, i.e., multi-domain-wall excitations, in the free energygration using [dx cosh*kx=4/3k, we obtain IIy=
landscape. The actual path chosen, however, depends on thpm*?>0 sincep,< 0 for a positive propagation velocity.
time T allocated to the transition. The transition rate is de-Correspondingly, the momentum is absorbed=ik.
termined by the Arrhenius factor ek®I'F/A) associated For fixed boundary conditions the transition framr -1
with the free energ¥ of the saddle points encountered alongto u=+1 can also take place by means of nucleation of two
the pathway. In addition, there is a prefactor determined bylomain walls at both ends of the system. The domain-walls
the attempt frequencies; this issue, however, is not dealt witeubsequently propagate toward one another and annihilate at
in the present context. x=L/2. The scenario is shown Fig. 13. Since the action is

C. Transitions in the Ginzburg-Landau case
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t FIG. 14. We show a four-domain-wall switch in ént) plot.

b)
) 2

B mL
" Sy(T) =2S,,g+ E (7.26
Finally, in the general case of a transition frars +1 tou
=-1intimeT by means of the nucleation and propagation of
n domain walls the nucleation actionn&,,, and the domain

u=+1

T walls move with velocityL/Tn; we obtain the action
FIG. 12. In(a) the switching fromu=+1 tou=-1 in timeT is mL?2
effectuated by means of a right hand domain wall propagating with SN =nSya+ onT (7.27)
velocity v=1/T. The domain wall is nucleated a0 and annihi-
lated atx=1. In (b) the process is depicted in @r,t) plot. In Fig. 14 we have shown in aixt) plot a four-domain-wall
switch.

In addition to domain wall modes, time-dependent local-
additive for the two-domain-wall system the nucleation ac-ized deformation and extended diffusive modes are also ex-
tion is given by Z&,,=2m. However, in order to effectuate cited, corresponding to small Gaussian fluctuations about the
the transition in timeT the velocity is half the velocity in the |ocal minima and saddle points, and the transition pathway
single domain wall case and we obtain for the action associfrom u=+1 tou=-1 proceeds by propagating domain walls
ated with the two-domain-wall transition with superposed linear modes subject to energy and momen-
tum conservation and topological constraints. The energy of
the initial state is given byE=(1/2) fdxp?, and the noise
field thus has to be assigned initially in order to reach the
switched statei=-1 in a prescribed tim&. For topological
reasons the domain walls must nucleate and annihilate in
pairs subject to absorption or radiation of linear modes, re-
spectively. Since the linear modes also carry positive action
the dynamical modes with lowest action correspond to nucle-
ation or annihilation of domain wall pairs with equal and
opposite momenta, i.e., equal velocities.

In the case of periodic boundary conditions the momen-
tum IT=fdxudp/ x of the initial and final states is zero. The
system is translational invariant and the formation and anni-
t hilation of one or several domain wall pairs moving with the
T same speed take place at equidistant positions along the axis.
b) For fixed boundary conditions the translational invariance is
broken and the momentult is nonvanishing corresponding
to nucleation and annihilation of domain walls at the bound-
aries. This general scenario of switching is completely con-
sistent with the numerical analysis [a1].

1 Improved estimate of

FIG. 13. In(a) the switching fromu=+1 to u=-1 in time T The above estimate of the nucleation acti®p for a
takes place by means of two domain walls propagating in oppositéomain wall was based on an analogy with the Arrhenius
directions with velocityy=1/2T. The domain walls nucleate at the factor in the simple Kramers case of escape from a potential
boundaries and annihilate at the centerinthe switching process well. Here we improve the estimate &, based on the
is depicted in ar(x,t) plot. phase space formulation. We consider the case of a switch
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fromu=+1 tou=-1 in timeT proceeding by1) nucleation A ()} u=-1 —"zﬂref:agc};
of two domain walls at the center of the system during the oo
time interval 8, (2) propagation of the domain walls with annihilation
opposite velocities during the time interval26t, and(3)

annihilation of the domain walls at the boundaries during the

time interval &t. From the width of a single domain wadj* domain wall

and the propagation velocity=L/2T we estimate the nucle- propagation

ation time, i.e., the time it takes for the nucleation to separate u=+1
into two distinct domain walls, to be of ordeft=2/vk, Tl
=4T/kgL. From Eq.(3.10 the nucleation action per domain /=0 ucleation
wall is given by '
{u(x)}
1 u,ét -
Sl = 5 f dxd(pdudt-7),  (7.28 - .
2) =410 FIG. 15. We sketch the orbit in phase space corresponding to the

) . . L . . nucleation of a domain wall pair during tintg,., the subsequent
whereu is the nucleation configuration just prior to breaking propagation across the system during tife2t,,q; and the final

up into two domain walls?{ is the energy density, which we anninilation of the individual domain wall at the boundaries during
determine below. In order to estimag, we consider the time

field equations(4.1) and (4.2). The initial configuration is
u(x)=u(x,t=0)=1 and, denoting the initial noise field by
po(X)=p(x,t=0) and, moreover, considering a large system,
so thatét is small, we obtain to leading order it from the
equations of motion

m=4ky/3, estimating[dpo(x)/ 9x]?=fkdpy(x)?, wheref is a
“fudge” factor of order 1, and lumping the term linear o
with the domain wall pair propagation, we obtaf,
=834 +f)KSI'E,. Further reduction yields the result

+ pO(X)] SnucI: (4 + f)rm- (7-34)
This expression for the nucleation action has the same form

2,
ulx,t) = [(F% + 2I'kdu(x, D1 - u(x,t)2]>

t=0

xXa+1, (7.29 as the one derived from the simple Kramers theory. In Fig.
P 15 we have in a phase space plot sketched the orbit and
X,t - . . . - - . _
p(x,t) ~ <—F p(2 )—2Fk§p(x,t)[1—3u(x,t)2]> |n_d|cated the nucleation, propagation, and annihilation re
X =0 gions.
X St + po(X), (7.30
or by insertion VIII. INTERPRETATION OF NUMERICAL RESULT
u(x,t) = pox)t+1, (7.3 Here we make contact with the numerical analysis of the

Ginzburg-Landau equation by E, Ren, and Vanden-Eijnden
#p 5 [21]. These authors analyze the noise-induced switching by
px.) =T _ﬁ“‘kopo(x) A+po(x).  (7.32  means of optimization techniques applied to the Freidlin-
Wentzel action
These solutions describe the initial part of the orbifurp)
phase space corresponding to the nucleation of two domain _ 1JL d fT dt(au F&ZU + 2TKuU(1 = U2 )2
walls. The unspecified initial noise fiefu(x) acts as an ini- Srw = 2J, X 0 at IX? kgu(1 =)
tiator. The noise profilggy(x) is localized at the position of
. . o (8.1
the nucleation. Since the orbit lies on an energy surface we
have Ey=(1/2) fdxp(X)?> and we infer the energy density for a system of siz& =1 over a time spail and find that the
H=(1/2)py(x)2. From the equation of motiordu(x)/dt  global minimum ofS.y corresponds to the nucleation and
~py(x) and inserting in the action in E¢7.28 we obtain  propagation of domain walls. First we observe that the mini-
Shuer= (1/2) 8t f A po(X) + ' (—32po(X) | X2+ 4K3po(X)) Stpo(X) mizing configurations, the minimizers, of E@.1) are iden-
-(1/2)py(x)?]. Rearranging and performing a partial integra-tical to the orbits found within the canonical phase space

tion, assumingpy(x) localized, we find the following expres- @pproach. This correspondence was discussed in Sec. Il and
sion for the nucleation action per domain wall: is seen by noting that insertion of the equation of motion for

0\2 p and the Hamiltoniari4.3) in the expression for the action

1 1 2 J Po(X 3.10 yields the Freidlin-Wentzel form in Eq8.1).

Sl = E&Eo’fz(ét){SkoFEOJ’rde( Ix ) } ( S(\?vi¥ching a system of size in time T bg m)eans of a

(7.33 single domain wall, corresponding to the pathway via the
) lowest local minimum of the free energy &,=m, the

This is a short time estimate and holds for a large systenpropagation velocity =p,/m=L/T, and we obtain the action
i.e., for keL>1. The energyE,=2(1/2)mv? is found from  Sy(T)=S,q+mL?/2T in Eq. (7.25 and associated transition
the two-domain-wall sector. Insertingf=4T/koL, v=L/2T, probability

031105-15



2

L).

FOGEDBY, HERTZ, AND SVANE
_ Shuel _mL”
2TA

-3

In the thermodynamic limit —e«, P—0 as a result of the
broken symmetry in the double well potential. At long times
the action falls off as 1T. At intermediate times$ and posi-
tions x we haveP «exp(-mx2/2At), and the domain wall in

(8.2

the stochastic interpretation performs a random walk with

mean square displacemerntZm, corresponding to diffusive

behavior. In Fig. 12 we have shown a domain wall nucleat-
ing at the left boundary and propagating with constant veloc-

ity v=1/T to the right boundary, where it annihilates. We
have used the same parameter values g21f i.e., 6=T
=.03, I'k%=6"1, T=7, and a system side=1. In Fig. 12b)

PHYSICAL REVIEW E70, 031105(2004)

35

FIG. 16. The actiorS(T) given by Eq.(7.27) is plotted as a

function of T for transition pathways involving up th=6 domain
walls. The lowest action and thus the most probable transition is

we have plotted the trajectory of the domain wall in spaceyssociated with an increasing number of domain walls at shorter

and time.

times, indicated by the heavy limiting curve. The curves correspond

The switching can also take place by nucleating two do+to choosingS,c=5IKo.
main walls at the boundaries. These then move at half the

velocity v/2 and subsequently annihilate at the center. Thi

of the free energy aFy,=2m, and the action is given by
S,(T)=2S,,.0+2S,(4T) in Eq. (7.26). The associated transi-

tion probability is
ZSMCI)eXF< ) .

P —
-

Snapshots of this process are shown in Figaland the
corresponding space-time plot in Fig.(bg

mL?

- H (8.3

Sition or annihilation actio . This is evidently a finite-
process corresponds to the pathway via the local saddle poi Bhuc y

QFe effect in the sense that the action at a fixativerges in
the thermodynamic limiL — o, corresponding to the broken
symmetry.

IX. SUMMARY AND CONCLUSION

In the present paper we have implemented the dynamical
phase space approach developed previously for the noisy
Burgers equation in the case of the one-dimensional noise-

Combining the contributions from nucleation and the sub-driven Ginzburg-Landau equation. Based on a linear analysis
sequent domain wall propagation we obtain the heuristic exef the static domain wall solutions in the noiseless case, we

pression in Eq(7.27), whereS, is the action for nucleating
a single domain wall and is the number of walls. From the
improved estimate 08, in Eq. (7.34 with fudge factorf
~1 we have

Shuci ~ Slko. (8.9

In Fig. 16 we have plotte® versusT for n=1-6 domain
walls using the parameter values[@l]. ChoosingS,,g ac-
cording to Eq.(8.4) we find excellent agreement with the
numerical results.

As also discussed if21] we note that the switching sce-

find that the kinetic transitions take place by means of propa-
gating multi-domain-wall configurations with superimposed
local deformation and extended diffusive modes. The ap-
proach also allows for a determination of the Arrhenius fac-
tor associated with the transitions. The motivation for the
present work is a recent numerical optimization study kst E
al. [21] of the noisy one-dimensional Ginzburg-Landau
equation based on the Freidlin-Wentzel theory of large de-
viations. We find excellent agreement both qualitatively and
quantitatively with the numerical finding of & al. [21]. The
dynamical approach offers in the nonperturbative weak noise

nario depends oif. At shorter switching times it becomes or low temperature limit an alternative way of determining
more favorable to nucleate more domain walls. In the preseritynamical pathways and the Arrhenius part of the associated
formulation this feature is associated with the finite nucle-transition rates.
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